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Abstract
The best effect o f  any thesis is that 

it excites the reader to se lf activity.

Thom as Carlyle

Dynamic and on-line computation have generated a challenging and theoretically 

interesting area of research with a wide variety of on-line applications in relevant fields of 

Computer Science. Dynamic and on-line algorithms are concerned with updating the 

output to a problem as the input is changed incrementally. We use competitive analysis to 

measure the efficiency of an on-line algorithm with respect to the performance of the 

optimal off-line algorithm.

This thesis studies the design and analysis of efficient on-line algorithms for several 

combinatorial problems: list update, paging, weighted caching, the k-server problems, 

graph coloring and on-line matching. We also consider some specific distributed and 

geometric computations in on-line setting.

The goal of this research is to demonstrate variations of the standard on-line 

models and develop robust on-line algorithms based on the generalized on-line 

frameworks using competitive analysis. It is hoped that the maturity of the theory o f  on

line algorithms and the cross-fertilization of dynamic and on-line computation will help in 

bridging the gap between theory and practice in the field of computer algorithms.

As fo r  me, a ll I know is that I know nothing.

Socrates
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Chapter ? Theory and Complexity of On-line Algorithms 13

— Connectivity [79,132],

— Spanning trees and forests [119,147,149,160.319],

— Shortest paths [17,18,80,187],

— Biconnected and triconnected components [ 119,187,289,340],

— Transitive closure or reachability [185,186],

— Planarity testing [118,128,129,130,321,322];

•  Computational Geometry [266,271,281 ];

•  Data bases [ 1];

•  Syntax-directed editors and grammars [293,294,295,298];

•  Data-flow analysis [ 13,53,298]; and

• Code generation and optimization [ 187].

There have been parallel incremental algorithms for minimum spanning trees and 

connected components [275]. Also, a beautiful research on dynamic data structures and 

algorithms for graphs can be found in [93.187],

2.1.2 On-line Algorithms versus Off-line Algorithms

An on-line algorithm  is one that receives a sequence of requests, and performs an 

irrevocable answer (action) in response to each request before the next request arrives. 

Each sequence of requests and corresponding actions have an associated cost.

Aho, Hopcroft and Uliman ( [3], pp. 109 ) define on-line execution, for an input 

sequence r, as follows:

Definition. The on-line execution of r requires that the instructions in r be 

executed from left to right, executing the ith instruction in r without 

looking at any following instructions. The off-line execution of r permits 

all the r to be scanned before answers need to be produced.
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Chapter 1

Introduction
TA PAATA 

Everything Changes

H**A<uTUf

The subject of this research is on-line computation with dynamic or changing input

data.

1.1 Dynamic Algorithms and Data Structures
The development of dynamic algorithms and data structures is a fruitful and 

challenging area that has achieved a great deal of attention in last years. Dynamic 

computation involves updating the solution to a problem when the input changes 

incrementally. This has generated many new algorithms and data structures for solving 

dynamic problems efficiently. Dynamic algorithms have been considered where a 

sequence of update and query operations are performed over time and each operation has 

to be completed before beginning the next

The objective of an efficient dynamic algorithm is to obtain considerable savings 

over recalculating the solution from scratch. There has been a lot of research especially in 

the field of graph algorithms motivated by many important applications in network 

optimization, VLSI layout, distributed computing and computational geometry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 1 Introduction 2

1.2 On-line Algorithms
The study of dynamic algorithms is relatively new and hence there is no standard 

definition in what are known as dynamic, incremental, update, or on-line algorithms. All 

above terms refer to algorithms in which a solution is maintained or modified as a result of 

an incremental change of the input data. Researchers have used variant definitions which 

were internally restrictive, mostly considering only “atomic” changes, not sequences. In 

particular, some algorithms were analyzed for numerous updates, while others allowed 

only one “atomic” change.

In this research, we attempt to carefully define the exact meaning of “incrementar 

and “on-line” algorithms. These definitions are based on those in [52,187] and [255,207], 

respectively. We hope that the presented categorization will be a useful start at 

understanding its modification in many problems. Our effort has been focused on efficient 

on-line algorithms, where partial information of the input data is assumed. We leave the 

more general study of fully incremental computation for future work.

There are several important reasons for studying and searching on-line algorithms:

•  On-line computation corresponds naturally to the real life situation, where the future is 

unknown.

•  On-line algorithms nicely complement many well-studied frameworks of the algorithmic 

theory (i.e., the dynamic and highly recursive computation).

•  The analysis of on-line algorithms forms an elegant model for measuring the 

performance of algorithms with partial or incomplete access to the input data.
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• The theory of on-line algorithms leads towards further research for a unified measure 

of complexity theory.

1 3  On-line Problems and Applications
A computational problem is said to be on-line if it is required to make irrevocable 

decisions about the output without complete information of the entire input. On-line 

algorithms attempt to model a real life situation, where the entire input is not known in 

advance and it is obtained incrementally.

Many problems in computer science are inherently on-line in nature and therefore 

there have been a lot of on-line applications in relevant fields. Indeed, several advanced 

computer applications arise such as real-time manufacturing systems, man-machine 

interfaces, robot navigation and computer graphics. Typical applications of on-line 

algorithms include resource allocation in parallel and distributed computer systems, the 

stock market, bin packing, cache management, file  migration, scheduling, routing, 

maintenance o f data structures and databases, communication networks and so on. In all 

these areas and especially for on-line solutions of combinatorial problems, interestingly 

beautiful mathematical arguments have yielded lower and upper bounds on their 

complexity.

1.4 Analysis of On-line Algorithms
A fundamental problem of interest in computer science is the analysis of algorithms 

with the intention of designing an efficient solution of a computational problem. We are 

interested in making good decisions in on-line computation and find an efficient solution 

based on the fact that each part of the solution is obtained without a priori knowledge of 

the entire input.
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One usual and standard way of solving on-line problems is to re-compute their 

solution from scratch after each input change (the off-line approach). Unfortunately, this is 

often computationally expensive.

There are more efficient and general approaches (called incremental approaches) 

to maintain some information between subsequent updates so as to react quickly in 

response to input changes. Many new algorithms and data structures for solving 

efficiently dynamic graph problems have been generated. Also, some efforts to analyze 

the concept of incremental computation from a theoretical complexity point of view have 

been developed [187].

In order to analyze the performance of on-line algorithms, some formal theoretical 

model is necessary. Traditional worst-case complexity usually fails here, since any 

algorithm will have an input that gives arbitrarily poor performance for many on-line 

problems. For example. List Update [173,312] and Paging problems [141,312]1 can be 

used to illustrate the shortcomings of the worst-case analysis for measuring the quality 

(efficiency) of on-line algorithms.

Previous work on on-line algorithms focuses on analyzing the performance of 

algorithms where the input is generated according to some fixed distribution [144,307]. 

Most of this work is concerned with analyzing data structures [57,187] and paging 

algorithms [141]. Thus, the “quality” of an algorithm is measured by its running time for 

a fixed distribution which depends on the chosen distribution. This is a useful model for 

studying specific algorithms, but we cannot use it in the designing and analysing an on-line 

strategy for the following two reasons:

•  Information about the specific input distribution may not be available in advance.

1 We will also study them in chapter 3.
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•  We desire to design robust algorithms for which the performance measure does not 

depend on a particular input distribution.

The problem of evaluating the measure of an on-line algorithm was addressed by 

Sleator and Tarjan [312]. They argued that the traditional approach of measuring the 

worst-case behavior does not seem appropriate for many on-line algorithms. Therefore, 

they suggested a different theoretical model to evaluate the performance of an on-line 

algorithm with respect to the optimal off-line algorithm that knows the entire request 

sequence in advance. The maximum ratio between their respective performances, taken 

over all request sequences, is called competitive ratio (factor) or competitiveness. This 

competitive method of analysis is named competitive analysis by Karlin et al. [204].

1.5 Thesis Outline

This thesis studies the design and analysis o f  efficient algorithms fo r on-line 

algorithms. We examine the following fundamental questions:

• How well can an on-line algorithm perform?

• how can we design efficient, algorithms that make optimal use of the available 

information?

The general and interesting problem of whether off-line algorithms can be 

significantly better (faster) than on-line algorithms arises. Previous efforts to resolve this 

problem concentrated on amortized time [325] and to a lesser extent space. There are two 

reasons for considering this general problem:

• Some situations are off-line ones and we would like to bound the penalty we pay for 

using on-line algorithms in off-line settings.
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• By comparing on-line algorithms to optimal off-line ones, we can indirectly compare 

on-line algorithms within a constant factor (i.e., the competitive ratio).

We discuss some of the areas in which on-line algorithms have been studied and 

we present techniques for proving upper and lower bounds on the competitive factors 

achievable by them in a variety of on-line problems.

The goal of this research is to study some of the areas in which on-line algorithms 

may apply and design algorithms that are competitively more efficient than the already 

existing ones under a variety of on-line settings.

The major contributions of this thesis are as follows:

• Provide general lower complexity bounds for the on-line algorithms on restricted inputs 

of some practical problems. Th se results are often pessimistic, since in practice the 

input to a problem is not arbitrary.

• Extend the k-server problem for non-resistive graphs against a lazy adversary. In 

addition, we show that the strong competitive factor of the harmonic algorithm for the 

2-server problem against a lazy adversary is in the interval (1,31 instead of the interval 

range [3,6] (See [285], Theorem 8). We also extend this result for the k-server 

problem.

• Give a slightly tighter competitive ratio for on-line coloring algorithm First-Fit on d- 

inductive graphs with strong lookahead I.

• Apply the dual bounding technique to simply reanalyze on-line matching algorithms.
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• Propose a deterministic V3 -competitive navigation algorithm for searching in 

unknown simple polygons (called streets) and show that no randomized algorithm can 

achieve a better competitive ratio than ln5 for a visual searching in unknown streets, 

generally.

In the remainder of this chapter we present an overview of the thesis' organization 

and discuss the above results in further details.

In C h a p te r  2  we introduce the terminology and notations used in this thesis. In 

particular, we give some fundamental definitions for incremental and on-line algorithms 

and derive lower complexity bounds for on-line strategies under some plausible 

restrictions.

Chapter 3 considers several general variations of the standard on-line models and 

some shortcomings of the worst-case analysis to measure the efficiency of on-line 

algorithms. We study the list update and paging problems in which the theory of on-line 

algorithms has been applied. We also deal with the competitive analysis of algorithms for 

managing data in a distributed environment.

Chapter 4 extends the theory of random walks on resistive graphs to non-resistive 

spaces. We develop methods for the synthesis of such random walks and we employ them 

to design randomized competitive on-line algorithms for k-server problems. Additionally, 

we consider the k-server problem in a more realistic distributed setting, where the 

transmission of information (messages) to the servers is costly.

Chapter 5 examines some classical combinatorial optimization problems in 

computer science in on-line fashion: the on-line graph coloring and matching. 

Furthermore, we apply the dual bounding technique, which is a general method for the
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competitive analysis by using the duality of linear programming (DLP) to obtain bounds 

on the optimal cost, in order to simply reanalyze several on-line matching strategies and 

show its general applicability.

Chapter 6 deals with the on-line algorithms and applications in Computational 

Geometry. Particularly, we propose an on-line navigation strategy in an unknown simple 

polygon (i.e., a street), which achieves the best competitive ratio of V3 known in the 

literature. Moreover, some geometric (or visual) routing problems have been developed 

for planar graphs under a specific on-line model, the so called fixed graph scenario.

Chapter 7 concludes the thesis with several final remarks, points out a few 

directions for future research and summarizes our results.

The Universe loves nothing so much 

as to change the things which are 

and to make new things like them.

Marcus Aurelius
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Chapter 2

Theory and Complexity of On-line 
Algorithms

J O  ♦l/VAl 4 0 M T Ofi
The Future is Unknown 

foLOfi

But how much o f  the future is worth knowing?
R Graham

ACM-SIAM Symposium on Algorithms, 1991

In this chapter we introduce the terminology and new variations on the standard 

model of competitive analysis for on-line algorithms used in this thesis. Particularly, we 

discuss the difficulties involved in analyzing the computational complexity of on-line 

algorithms. We also present new theoretic approaches to derive lower complexity bounds 

and models for on-line algorithms under some plausible restrictions.

Throughout this thesis, standard theoretical terminology has been used as 

contained in the algorithms and data structures’ references [3,64,100,171,244,258]; e.g., 

classical definitions on graphs, asymptotic growth notations, computational models, and 

so on. Sometimes, we restate some definitions and results if needed for our purposes.

2.1 Theory of Dynamic and On-line Algorithms
Classical theory of algorithms deals with computational problems in which an 

algorithm is assumed to have a complete knowledge of the input data.
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Definition 2.1: A batch algorithm takes an input and computes an output that is some 

function of the input. Such algorithms are also called off-line or hindsight algorithms in 

the literature.

This setting is not realistic in some algorithms, because sometimes only partial 

information about data is available, and the algorithm is supposed to compute, or at least 

approximate, the desired function based on this partial information.

2.1.1 Incremental Algorithms
In contrast to batch algorithms, an incremental computation is concerned with 

updating the output as the input arrives. Let f:  I  - * 0  be a function (problem) with domain 

/  being the set of problem instances or inputs, and range O the set of answers or outputs. 

Each I €  /  and a  e  O is itself a set, with III = I the length of the problem instance. Given a 

problem instance I, let a  = f(I); in this case, we say that algorithm A  implements f .  The

number of steps required by algorithm A to compute f{\), in the worst case, is the 

complexity time of A ,  denoted by Ta(1).

Definition 2.2: An incremental algorithm A A  for computing the function /  takes as input

the “batch input” I, the “batch output” f(l), possibly some auxiliary information, and a 

description of the “change in the batch input", AI. The algorithm computes the “new 

batch o u tp u t'jfl + AI), where I + AI denotes the modified input, and updates the auxiliary 

information as necessary (see Figure 2.1). What we refer to as incremental algorithms 

have been called dynamic algorithms, on-line update (or simply update) algorithms and 

on-line maintenance algorithms in the literature. These definitions are based on those in 

[52,187].
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A batch algorithm for computing a (problem) function /  can obviously be used in 

this situation. It is called a start-over algorithm in this context (i.e., it starts from scratch). 

A standard, start-over algorithm can be viewed as an off-line algorithm. For example, 

Heapsort [3,175] is an off-line algorithm.

Output: f(l)A batch algorithm for 
computing f

Input: I

Auxiliary Information

An incremental algorithm 
for computing f

Modified Input: 
I + Al

Modified Output:
fd + ad

Modified Auxiliary Information

Figure 2.1: The above picture depicts the abstract problem of incremental computation. The 
shaded regions denote the input and the output The dotted lines around the auxiliary 
information signify that it is optional information maintained by the algorithm and it may 
vary for each incremental algorithm.
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There are some problems that can be solved by standard algorithms, but the goal is 

to find an incremental algorithm with better worst-case complexity than the start-over 

algorithm. An example of this approach includes Frederickson’s algorithm [147] for 

updating minimum spanning trees.

Incremental algorithms, which are faster than the start-over algorithm for single 

change in the worst case, have been relatively few. For example, the Incremental Relative 

Lower Bound (IRLB) method [52] classify some incremental problems from this point of 

view. This method is based on a sequence of deletions only (not additions) and gives 

lower bounds for the incremental algorithms in terms of that for the batch strategies. This 

approach seems to b? more of a theoretical issue than a practical one.

In the typical incremental problem, the applied incremental changes are categorized 

as additions and deletions. If only insertions or deletions are permitted, then an 

incremental algorithm is called semi- or partially-dynamic, and if both insertions and 

deletions are allowed, it is called fully-dynamic. For example, Tarjan’s “union-find” 

algorithm [329] can be viewed as a partially-dynamic incremental algorithm for the 

problem of connected components. On the other hand, Fredrickson’s algorithm for 

updating minimum spanning trees [147] is an example of a fully-dynamic algorithm. Also, 

Italiano [187] considers a fully-dynamic algorithm for updating 2-edge connectivity. In 

some cases, algorithms may handle both types of change, but the analysis may apply only 

to a sequence of one type of change ( e.g., see [346]). Typically, although not always, on

line algorithms are partially-dynamic; e.g., any list maintenance strategy is a notable 

exception ( e.*. . see [173,312]).

Research for such dynamic or incremental algorithms has been focused on the 

following areas:

• Graph theoretic algorithms;
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— Connectivity [79,132],

— Spanning trees and forests U 19,147,149,160,319],

— Shortest paths [17,18,80,187],

— Biconnected and triconnected components [119,187,289,3401,

— Transitive closure or reachability [185,1861,

— Planarity testing [118,128,129,130,321,3221;

•  Computational Geometry [266,271,2811;

• Data bases [ 1];

•  Syntax-directed editors and grammars [293,294,295,298];

•  Data-flow analysis [ 13,53,298]; and

•  Code generation and optimization [ 187].

There have been parallel incremental algorithms for minimum spanning trees and 

connected components [275]. Also, a beautiful research on dynamic data structures and 

algorithms for graphs can be found in [93,187].

2.1.2 On-line Algorithms versus OfF-line Algorithms

An on-line algorithm  is one that receives a sequence of requests, and performs an 

irrevocable answer (action) in response to each request before the next request arrives. 

Each sequence of requests and corresponding actions have an associated cost.

Aho, Hopcroft and Ullman ( [3], pp. 109 ) define on-line execution, for an input 

sequence r, as follows:

Definition. The on-line execution of r requires that the instructions in r be 

executed from left to right, executing the ith instruction in r without 

looking at any following instructions. The off-line execution of r permits 

all the r to be scanned before answers need to be produced.
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The above definition is given in terms of a sequence of "instructions”. There is no 

fundamental difference between instructions and requests or any other kind of input data. 

The description of the input as a sequence of instructions (requests) is typical for an on

line problem.

There is also no difference between “on-line update” and “on-line algorithms”. It is 

a matter of the questions that we choose to ask. On-line algorithms usually refer to a 

sequence of operations (requests), rather than a solution that needs tr  be updated.

On-line (resp., off-line) algorithms are often associated with a particular on-line 

(off-line, respectively) data structure and its corresponding timing [308,309]. Generally, 

we are interested in a sequence of operations for on-line algorithms, rather than a single 

update. With these notions in mind, we define the on-line setting more rigorously in order 

to study the design and analysis of the efficient on-line algorithms.

An on-line algorithm is specified by:

•  A set R of requests (inputs or problem instances)',

•  A set A of actions (answers or outputs)',

•  A cost function C: UR* —» R + , where R + denotes the set of non-
/■  i

negative real numbers.

For any request r e  , define Opt{r) as minieA, C(r, a ). An on-line algorithm

A  is determined by function /  : R+ - » A , where the domain is the set of all finite non-

empty sequences of requests. In response to a sequence r  = n , r2,..., r( the algorithm 

performs the sequence of actions A (r) =  /  (r,), /  (r,, r2) , . . . , /  (r,, r2 r,) and incurs

the cost C(r, A(r)). In the above definition, we note that an on-line algorithm is
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deterministic. In section 2.2.4, we will extend the definition to randomized on-line 

algorithms.

On-line algorithms may be contrasted with off-line algorithms, which can use the 

entire sequence of requests in advance and take an action in response to each request. In 

other words, an off-line algorithm knows the future, but an on-line does not. On-line 

algorithms must make decisions based only on past history, which is a more realistic 

situation in the teal world. For example, in the context of a database system each request 

may be a query or an update, and the corresponding action involves retrieving data from 

and possibly modifying the database. In an investment situation, a request might consist of 

a price quotation for a commodity and the action might be to buy or sell some amount of 

the commodity. It is clear that, in some on-line settings, partial information about the 

future is a great disadvantage (for example, think of the above situation as the stock 

market).

Here, the important computational problem of measuring the performance of an 

on-line algorithm arises. In computer science, we ask the following fundamental questions 

for an on-line problem:

•  How well can an on-line algorithm perform?

•  How can we design an algorithm that makes optimal decisions based only on the

available partial knowledge of the future?

In order to study these questions, a formal theoretical framework for the 

performance quality of an on-line algorithm is needed. The analysis of a performance 

measure of on-line algorithms is more difficult than that in off-line settings, since usually, 

whatever action an on-line algorithm takes in response to an initial sequence of requests, 

there will be a sequence of further requests that makes the algorithm look inefficient
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2.2 On-line Models and Complexity Analysis
We consider the development of competitive analysis among amortized analysis. 

We also take into account the results that distinguish the different types of randomized 

adversaries which comprise the present theoretical models of on-line algorithms.

2.2.1 Competitive Analysis
Competitive Analysis provides a technique to develop a meaningful worst-case 

analysis of on-line algorithms without making assumptions about the distribution of the 

input.

There are many on-line problems for which the traditional worst-case performance 

of an on-line algorithm gives wrong results about the quality of the algorithm. We use List 

Update Problem [50,51,173,312] to get a poor performance of the worst-case analysis. A 

common lower-bound tec.inique is to pretend that an algorithm plays against an adversary. 

The adversary observes the behavior of the algorithm and accordingly chooses a bad input 

to fail an on-line algorithm. An adversary who plays against a deterministic algorithm for 

List Update can always choose to access the last item in the algorithm's list Thus, any 

deterministic on-line algorithm can be forced to pay the maximum amount ffor every 

access.

There has been an extensive work cn list update problem where the input consists 

of a sequence of accesses. For each access in the sequence, the item to be accessed is 

independently chosen according to a fixed distribution over the items

[50,57,225,296,312]. Several early studies of the paging [141,144,261,307] and dynamic 

structures [57,187] assumed a specific stochastic model of the source of requests. Within 

such a model, an on-line algorithm may be considered optimal if it chooses its actions so 

as to minimize the expected cost, where the cost depends on the sequence of requests
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generated by the stochastic source on the sequence of actions chosen by the algorithm in 

response to these requests. However, the choice of a stochastic model does not always 

design efficient on-line algorithms, because it requires data that may not be readily 

available in advance.

An alternative to stochastic models is competitive analysis which evaluates an on

line algorithm in comparison to the optimal off-line algorithm processing the same 

sequence of requests. This worst-case approach was first presented by Sleator and Tarjan 

in analyzing algorithms for List Update [312].

Definition 2.3: For a positive constant d, the on-line algorithm A  is said to be d-

competitive if there exists a constant (3 such that, for all request sequence r, we have

C(r, A (r)) < d-Opt{r) + p.

where Opt{r) and C(r, A (r)) are the costs for servicing the input r  that are charged to the 

optimal off-line and on-line algorithms, respect5vely. The competitive ratio (or factor) of 

A  is defined as the infimum (i.e., greatest lower bound) of the set c such that A  is c-

competitive.

Some authors use a variant of these definitions, in which p is required to be zero. 

Since we are comparing an on-line algorithm to the optimal off-line one, we are focusing 

on what is lost in processing the information in on-line manner. Some sequences are 

inherently difficult', that is, sequences which would access many different items in turn 

(e.g.. List Update Problem [173,312]). An on-line algorithm is not expected to perform 

efficiently on such sequences, because even the optimal off-line algorithm has a high cost 

on these requests.

The concept of competitive ratio is related to the minmax regret concept in Game 

Theory [9,95,111,150,268], and we shall often view the situation as a game between an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 18

on-line player who selects the on-line algorithm and an adversary who chooses the 

request sequence, in order to maximize the ratio between the algorithm's cost and that of 

an optimal off-line algorithm.

Competitive analysis was developed around the same time as Amortized analysis

[100,325]. Both techniques are often used in conjunction, although the use of one does 

not necessarily imply the use of the other. In the following subsection we shall illustrate 

the concept of an on-line algorithm and its competitive analysis.

2.2.2 Rental Ski Problem
An on-line algorithm will be designed for the rental ski (or equipment rental) 

problem , which has been introduced by L  Rudolph [207], to illustrate the concept of the 

competitive ratio.

Supposing we were to decide to try the sport of skiing. Because we don't know 

how many ski trips we will take, we cannot decide whether to rent a pair each time or to 

buy a new pair of skis. If we bought skis at the beginning and then decided we did not like 

the sport after a couple of runs, renting would have been cheaper. On the other hand, if we 

were always renting and were to like the sport enough to ski many times, the right option 

would have been to buy the skis in the beginning.

An answer to the ski situation is to rent skis until the cumulative cost of renting 

fust exceeds the cost of buying a new pair, and then to purchase a pair at that point. 

Suppose the cost of renting a pair of skis for a ski trip is 1, and the cost of buying a pair of 

skis is s. Here, there is only one possible request (“take a ski trip”) and three possible 

actions (“rent", “buy", and “use skis already bought"), with cost 1, t and 0 units, 

respectively, where the third action can be invoked only if the second action has occurred 

previously.
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A moment’s reflection shows that with this strategy, our net cost never exceeds

twice the minimum possible cost up to the point when we stop skiing, no matter when we

stop skiing. Questions such as this come up in the study of on-line algorithms. In the ski

rental problem, it is clear that any possible on-line algorithm is of the form “rent for the

first k trips, then buy, then use the skis already bought” . On a sequence r  of t requests, the

„  .  f t , if t S k
cost increases by the on-line algorithm A (r) is C(r, A (r)) = <,

fk + s , otherwise

and the cost incurred by an optimal off-line algorithm is Optir) = minis, t).

The objective is to choose the parameter k to minimize the competitive ratio. In 

other words, we want the adversary to continue the ski trips until the on-line algorithm 

buys a pair of skis, and then stop. The on-line algorithm's cost on such a request sequence 

is k + s, while the optimal off-line cost is mw(k+l, s). Therefore, the competitive ratio is 

k + s
p (r,A (r)) = ---------------- . Assuming that s is an integer, the competitive ratio is

min(k + l,s)

2 s-l
minimized by setting k = s - I. thus achieving a competitive ratio of ------- .

s

2.23 Amortized Analysis
Amortized Analysis or more specifically a potential function analysis (see

[100,325]) is a useful tool that is used in analyzing the running time of an algorithm that 

performs a sequence of operations. Usually, such an analysis is in contrast with a worst- 

case analysis, which bounds the cost of the sequence by summing the worst-case costs of 

the individual operations. The idea was initially developed for use in analyzing data 

structures, although it has been useful in many other on-line contexts (e.g.. Task Systems 

[66], Server Systems [251,254]; see also chapter 3).

The framework consists of a system and a set of operations. Typically, we are 

mainly concerned with the amount of time required to perform the whole sequence of
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operations instead of a single operation. Using the worst-case analysis, the cost per 

operation yields overly pessimistic results on the time to perform the entire sequence of 

operations (e.g., consider increment operations on a k-bit counter [100]). The goal of 

amortized analysis is to analyze the worst-case over sequences of the average cost per 

operation [325]. Examples of this type include amortized analysis of balanced search 

trees, the union-find data structure, and splay trees ([94,147,247,304,325,326]).

A stronger type of result for data structures uses amortized analysis together with 

competitive analysis to bound the amortized cost of an operation with respect to an 

optimal off-line algorithm. A typical competitive analysis with a potential function is of the 

following form:

Competitive Analysis with a Potential Function

Given an on-line algorithm A  producing a solution in response to r  = ri, *2. • •• n:
1. Define a potential O  which is a function of the states of A  and Opt.
2. Show that, in response to each request

a x S  b-Ci+ O, - 0 ,1 , 
where a  > 0, x, and c, are the costs incurred by A  and O pt, respectively, in
response to the *th request, and O. is the value of the potential function after A
and OPT have responded.

3. Sum the inequalities, showing that the cost incurred by A  is bounded by
(b-opt + O/ - O 0) / a

where “opt” is OPT’s cost.
4. Show that Q? - O0 is appropriately bounded.__________________________________

Figure 22: An Amortized Analysis together with Competitive Analysis,

A potential function  is defined to represent the “distance" of the on-line 

algorithm’s configuration to the optimal off-line algorithm’s configuration; its name stems 

from a natural interpretation of the physical system  [100,325].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 21

We may think of a potential function analysis as transforming OPT’s costs: In 

response to the ith request. O p t s  cost is changed to c ' = c, + (<!>, ) / b . The analysis

then shows that OPT’s overall cost is not substantially increased under the transformation, 

and gives a worst-case (per operation) bound on the transformed costs. That is, 

b c'> a x, is shown for each i.

In section 3.2, we consider List Update to illustrate the use of amortized analysis 

in conjunction with competitive analysis and show that the Move-to-Front (MTF) 

algorithm for List Update Problem [173,312] is 2-competitive.

2.2.4 Randomization in the On*line Model
In playing against an arbitrary deterministic on-line algorithm A ,  adversary

constructions are the principal means of proving lower bou ics on the competitive ratio 

achievable for a given problem. The constructions usually depend on the ability to simulate 

A .  Thus, we would expect consideration of randomized on-line algorithms, which toss

coins in the course of their execution, to improve the performance of on-line algorithms.

It seems that the unpredictability of such randomized algorithms should make it 

more difficult for an adversary to construct bad sequences. The amount of information 

available to the adversary will determine the strength of the adversary. We measure the 

strength of a randomized on-line algorithm in terms of the strength of the adversary it 

plays against and the competitiveness it achieves.

Ben-David et a i  [47] introduce the most general framework for on-line algorithms, 

request-answer games. We may view a randomized algorithm as playing a game against a 

deterministic adversary. In each play of the game, the adversary chooses the request 

sequence r = n ,  r( and its own sequence of actions b = bj, b2, .... bj, and the on
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line algorithm chooses the sequence of actions a = a(, a2 a*. We have the following

three types of adversaries in increasing order of power of randomized on-line algorithms:

•  The Oblivious Adversary: 

rt(bi)(ai)r2(b2)(a2)...;

that is, an oblivious adversary chooses a complete request sequence before the on-line 

algorithm begins to process it. It is also called a weak adversary. An algorithm which is c- 

competitive against such a weak adversary is called weakly c-competitive.

•  The Adaptive On-line Adversary: 

ri(bI)atr2(b2)a2...;

that is, an adaptive on-line adversary is allowed to watch the on-line in action, and 

generate the next request based on all previous moves made by the on-line algorithm. This 

adversary is also called a medium adversary. However, how to answer the present 

sequence has to be decided without knowing how the algorithm answers the present and 

future requests.

•  The Adaptive Off-line or Strong Adversary: 

riair2a2... r<a*btb2... b/;

that is, an adaptive off-line adversary may adapt the produced sequence of requests to the 

random choices made to date by the on-line algorithm, and then pay for the entire 

sequence optimally. However, it can wait to see the entire sequence before deciding how 

to answer any request. An algorithm, where is c-competitive against such a strong 

adversary, is called strongly c-competitive. Note that in the above notations, the left-to- 

right sequence indicates the time sequence of the requests and actions, and parentheses 

indicate actions that are kept secret.

Suppose an adversary plays against a randomized algorithm A  and presents a

sequence r  to the algorithm. Let C(r, a) denote the cost of the adversary’s answers to the 

sequence r  and let E[C(r, a)] be the expected cost of algorithm A  on r. The randomized
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on-line algorithm is said to be c-competitive if, for every adversary and for a positive 

constant c. we have

E[C(r, a) - c-C(r, b)] £  p, 

where P is a constant independent of the length Irl = /.

All three adversary types have the same power against deterministic on-line 

algorithms. Against randomized on-line algorithms, the adaptive off-line adversary type is 

clearly the most powerful, and the oblivious adversary type is the least powerful. The 

competitive ratio that is achieved depends on the adversary type considered (see 

[47,141,261]).

Ben-David et al. [47] prove the following two very powerful theorems about the 

relative strengths of these adversan js:

Theorem 2.1. I f  there exists a randomized c-competitive algorithm against any adaptive 

off-line adversary, then there also exists a deterministic c-competitive algorithm.

Theorem 2.2. I f  there exist a c-competitive algorithm against oblivious adversaries and a 

randomized d-competitive algorithm against adaptive on-line adversaries, then there is a 

(c d)-competitive algorithm against any adaptive off-line adversary.

The two theorems together imply that if there exists a best randomized c-competitive 

algorithm against an on-iine adversary, then there exists a deterministic c2-competitive 

algorithm.

Unfortunately, Theorem 2.1 is not constructive generally. In [111], an infinite 

request-answer game is shown such that there is a randomized 1-competitive strategy, but 

there is no computable c-competitive strategy for any c > 1. Theorem 2.2 is important, as
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it lets us show the existence of a deterministic competitive algorithms by constructing 

randomized competitive algorithms. Irani and Karp show that Theorem 2.2 is tight for 

request-answer games (see an example in [47]).

Finally, there is much greater difference between an oblivious adversary and an 

adaptive adversary than that between adaptive on-line and off-line adversaries. This is best 

illustrated in the Paging Problem [312]1. Similar work has been done on List Update

[173,312], although the results are less dramatic.

2 3  Complexity Bounds and Models for On-line Algorithms
In this section, we consider the issue of restricting the computational sources for 

on-line algorithm. This is a practical idea which is addressed by Borodin et al. [65] and 

underlines the philosophy behind Paging problem with locality o f  reference. The goal is 

to find an on-line algorithm that computes the new answer faster than an off-line 

algorithm, when a small change in the input is given. We give relative lower bounds of an 

on-line algorithm in terms of that for the off-line performance available. We also show that 

no on-line algorithm can be better than / times the hypothetical optimal off-line algorithm, 

where I is the length of the request sequence r.

23.1 Lower Complexity Bounds
Typically, an efficient on-line algorithm uses an additional amount of establishing 

supplementary data structures and preprocessing cost that is required to produce a good 

(efficient) initial solution. This amount is often referred to as preprocessing cost (time) of 

the algorithm.

Generally, an on-line algorithm returns the tuple (a, T0), where a  is the current 

answer and T0 is any preprocessing time. The computational model used determines the

1 Also see chapter 3.
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form of preprocessing cost. In a Random Access Machine (RAM) [3], T0 consists of the 

complete context of memory and registers after each step of the algorithm. Clearly, T0 

depends both upon the computational model and the particular algorithm being used; 

while the answer a depends only upon the definition of the problem being solved. 

Additionally, the preprocessing cost that is required to be an output does not necessarily 

increase the cost by more than a constant factor, since the algorithm must already maintain 

the state internally.

Proposition 2.1. Given any on-line or off-line algorithm A ,  problem instance I, answer a, 

and preprocessing cost T0, we have that T^(/) = £2(lal + IT0I), where TA(l) is the time 

complexity of the algorithm A .

Proof: Since A  outputs a and T0, it has to write them to some memory device. Z 

Definition 2.3. Let / :  /  —»O be a function (problem).

If (V/ € R^K BIq € I  with IIqI = /) [a = /(Iq )] and a can be determined in time dominated

by Tf, then the function/for which such a procedure exists is said to be a good function  or 

a function with a good initialization value.

Clearly, a good initialization value problem can be found in complexity time 0(1 + 

size of the output) by inspection for many functions. For example, the sorting by 

comparisons, maximum and minimum problems have good initialization values. We see 

that the existence of a good initialization value is a property of the function (problem) / ,  

and not of any particular algorithm which implements it. Also, there is no direct relation 

between preprocessing time and good initialization values.
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Definition 2.5. An (on-line or off-line) algorithm A  is said to be bounded if it implements 

a function/  with a preprocessing time T0 such that IT0I £ 7).

Again, we see that the notion of preprocessing cost has only a relationship with the 

algorithm that implements it. Particularly, an algorithm that has no preprocessing cost is a 

special case of a bounded algorithm for some computational problems (e.g.. on-line 

coloring partial graphs). We can use the above two definitions to limit the power of an 

on-line algorithm, although all of the on-line algorithms are not restricted. Furthermore, if 

an efficient on-line algorithm exists for a problem / , we can design an efficient off-line 

algorithm by using the on-line algorithm repeatedly.

This would be developed by the following procedure:

1. Compute the output value for some initial dummy input.

2. Apply the on-line algorithm repeatedly and compute the real value for the

problem instance by changing the initial values, one-by-one, successively.

More formally, we get the following algorithm which is called an effective 

algorithm:

0. I «- Iq ; {* Iq is an initial dummy input of length / = 11{, I. *}

1. a<-/a);
2. T «- T0(/); (* The initial preprocessing cost. *}
3. for i «- 1 to / do;

(a, To) <— Act (a, I, T, I<); {* A <» denotes an on-line algorithm. *}
14— I,; {* I is successfully modified to I„ where the Hamming distance 

_________________________ II -1 ,1 «  e, for each e > 0, under a suitable encoding. *}
Figure 23: Effective Algorithm A* for Updating an Initial Solution.

Theorem 2.3. A good function f  can be implemented by both bounded off-line and on

line algorithms if and only i f  Tf  <1 TKm (I).
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Proof: Let 7^,(/) be the complexity time of the effective algorithm A '  for computing 

/ ( l '0) with I Iq I = / (see figure 2.3). S in c e /is  a good function, the complexity time of 

steps 0 and 1 is less than T). Also, the complexity time of step 2 is greater than that of step

1. The time complexity of steps 3 and 4 is /-(complexity of step 4) £  /• 7 ^ ( 0 ,  because

otherwise the effective algorithm A* for computing /  would be better (faster) than the 

optimal off-line algorithm; which is a contradiction. Thus, Tf <, I 7 ^  (/).

T rConversely, we assume that the theorem is not true; that is, T ^ ( l )  < - j - .  Then the

complexity time of the effective algorithm A * is less than T/, which is a contradiction 

again. Therefore, our theorem is true. □

Now, we consider the problem "sort by comparisons” to illustrate the above proof. 

Sorting by comparisons has a good initialization value with time complexity O illog  I) by 

applying our effective algorithm. Clearly, this is a contradiction, because "sorting” cannot 

be that fast ( e.g., see [175], pp. 350-352 ). So the best bounded on-line algorithm cannot 

be faster than O d log I).

23.2 Amortized Complexity Bounds
In some environments, an amortized performance of an on-line algorithm may be 

better than its worst-case complexity time, even if some steps have a poor worst-case 

performance. We apply Theorem 2.3 to the amortized case analysis and we have the 

following result;
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Corollary 2.1. I f  a good function f  can be implemented by both bounded off-line and on-

T
line algorithms, then 7 ^  (/) $ —j - ,  where (I) denotes the time complexity per 

operation required by an on-line algorithm A<,„ amortized over I operations.

Proof: By contradiction, using the same argument as in the proof of the Theorem 2.3. □

2 3 3  On-line NP-Completeness
We apply Theorem 2.3 to an NP-complete problem [156,209] and show the effect 

this problem has on the complexity time of on-line algorithms.

Theorem 2.4. There is no bounded on-line algorithm with time complexity less than 

Tk^AiiD/l for the k-SAT problem, which is an NP-complete fo r  3 <k<l .

Proof: Let us construct a good initialization value for k-SAT problem with / clauses such 

that each clause contains k literals Xi, x2,..., x*. where x; = T (true value) for every 1£ i £ 

k. Clearly, the theorem is true by using Theorem 2.3. □

Additionally, we show that no NP-complete problem can have a polynomial time, 

bounded on-line algorithm unless P = NP.

Corollary 2.2. I f  there is a bounded on-line algorithm A on that implements any NP- 

complete problem (function) f  in polynomial time, then P = NP.

Proof: Suppose that there is such an on-line algorithm A ^  , then we can construct a

polynomial transformation to use it to update k-SAT instances, where 3< k £ /. By

Theorem 2.4, we get that the complexity time T  (/) cannot be polynomially better*«•
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(faster) than T*.ski{1)/1. This implies that every NP-complete problem must be in P (i.e., 

NP c  P) Therefore, P = NP. □

We would tike to note that a statement (without a p ro o f!) similar to Corollary 2.2 

was made in [9,80] for incremental graph algorithms. Also, the above complexity results 

for on-line algorithms can be easily extended to incremental algorithms as well.

We have seen that the lower bound of an on-line algorithm depends strictly upon 

the function (problem) and not upon the implementation. The above Theorem 2.3 holds 

for on-line algorithms that cannot be performed in time faster than that required for a good 

initialization of the problem. It is an interesting open problem whether we can find any 

function for which no good initialization exists to such on-line algorithms. It would also 

be interesting to determine a set of necessary conditions for a good function (problem). 

Generally, the techniques to derive lower bounds for an on-line problem in terms of that 

for the off-line problem limit the preprocessing cost available and therefore it is a specific 

problem, unfortunately.

2.3.4 On-line Complexity Models

Delcher and Kasif [264] proposed other notions o f completeness for on-line 

algorithms, but they completely ignored the preprocessing issue. Although their results are 

interesting, they are somewhat weak in that the issues of dynamic date structures and 

preprocessing which are overlooked. They tried to overcome this drawback by showing 

the following conjecture: the on-line versions o f all P-complete problems are P-complete.

R eif [290] presented another on-line complexity model to analyzing on-line algorithms 

and sketched an interesting notion o f completeness. He showed that some problems are 

umikely to have efficient on-line algorithms, but he did not develop a comprehensive 

theory or consider the necessary details of preprocessing. He pointed o t that there exists
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a number of problems for which it is difficult to develop an on-line algorithm with linear 

time complexity. Some of such problems for which a deterministic on-line algorithm can 

be designed in polynomial time with respect to sequential LOGSPACE Turing Machine 

reductions include:

1. Acceptance o f a linear time Turing Machine;

2. Path system problems;

3. Boolean circuit evaluation;

4. Unit resolution, and

5. Depth-first search numbering o f a graph.

There exist linear time reductions in the sequential RAM model of computation for 

all these problems. Also, they are constant-time updatable; that is, they can be reducible to 

each other in constant time under a suitable encoding. This result implies that if a sublinear 

on-line algorithm can be found for updating one of these problems, it can be applied to 

update any of them.

Finally, Miltersen et al. [264] consider a new and more general complexity 

approach to incremental computation. They defined some new complexity classes for 

incremental algorithms and studied their relation to existing ones (e.g., sequential and NC 

parallel classes). Particularly, they show that some problems exist that belong to the 

incremental versions of P-complete problems (e.g., the comparator circuit-value problem 

and the comparator network-stability problem) and prove that some important special 

dynamic solutions imply parallel ones. It has also been shown that problems with 

sequential space complexity have small incremental time complexity. According to the 

authors, the classes incremental TIME and SPACE are very important for getting a better 

understanding of the relationship between incremental and parallel computation.
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In conclusion, we would like to point out that there exist many challenging open 

problems in this area. The following are the most interesting for further research on the 

complexity models for on-line or incremental computation:

•  On-line or incremental versions of P-complete problems are P-complete problems.

• How is the incremental version of the class POLYLOGTIME related to the class 

LOGS PACE ?

•  What is the relation between the incremental version of the class POLYLOGTIME1 and 

NC parallel class of problems which have optimal parallel algorithms?

When it is not necessary to change, 

it is necessary not to change.

Lord Falkland

1 See [264] for the definitions and more details.
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Chapter 3 

On-line Models and Applications

The mathematician's patterns must be harmonious. 

Beauty is the first step: there is no permanent 

place in the world fo r ugly mathematics.

G. H. Hardy 

A mathematician's apology.

This chapter first outlines t : me general theoretical models followed by 

applications for the List Update and Paging on-line problems. Additionally, we present 

some new results and simple extensions of the above problems for variant on-line models. 

This study, along with Chapter 5, is intended to illustrate the importance of the field and 

to provide a context for the work in this research.

3.1 On-line Theoretical Models
We introduce two general on-line theoretical models, the on-line Games and 

Metrical Task Systems (MTS).

3.1.1 On-line Game Theory
Game theory is a mathematical discipline dealing with multiperson decision 

problems, which is often called the theory o f conflict without or with cooperation between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 3 On-line Models and Applications 33

several parties. In a non-cooperative (resp., cooperative) game, the players are (resp., are 

not) inclined to cooperate and to form coalitions A non-cooperative game which gives 

rise to opposite claims is called a zero-sum game.

The history of game theory is generally accepted to start with John von 

Neumann's article “Zur Theorie der Gesellschaftsspiele” (1928) 1128]. However, the 

development of game theory gradually started to appear after the book “Theory of Games 

and Economic Behavior" [269] was published and was inspired by economic problems 

rather than problems from physics or other areas.

Games and game-like phenomena occur naturally in computations1 settings. There 

are many applications of gante theory in computer science. For example, in distributed 

computing and cryptography, researchers have tried to develop models that reflect the 

competitive nature of distributed and cryptographic protocols.

It is believed that on-line games capture most of the on-line problems in which 

competitive analysis is applicable. An interesting attempt is to describe on-line problems 

in terms of games and develop general techniques of constructing competitive algorithms 

[47,66,285]. Such results are still in progress [9,89].

An on-line game is a triple y = (Q, R,f),  where

• Q is called a set of states.

• R is a set o f  requests.

• f:  Q x R x Q  R  is a cost function , where R  is the set of real numbers. We also

assume that the sets Q, R are finite and the function /  must satisfy certain topological

properties to ensure that some minima and maxima are actually achieved.
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In [89], an interesting theory of on-line games and its relationship to the fixed 

point theory for functional spaces has been developed, which is useful for the proofs of 

some properties of on-line problems. It is not in our intention to restate it here. Instead, 

we consider some on-line games and applications.

For example, let us first consider a simple bit-matching game: both the input and 

output consist of one bit for each one and the cost is 1 if the output matches the input, 2 if 

it does not. Clearly, any algorithm for the bit-matching game described above is 2- 

competitive, with zero additive constant. Moreover, if P is an on-line problem which 

consists of repeated plays of the bit-matching game, then P has an optimal competitiveness 

of 2. This simple on-line game simply shows that it is impossible generally to compute the 

optimal solution of an on-line optimization problem without the notion of competitiveness.

We now describe another simple two-person game which is at the core of many 

other on-line algorithms and that is a special case of the server problem1 [255], Also, 

some special cases of this game have been studied by Baeza- Yates et al. [34,35].

The cat-and-mouse or hide and seek a mouse game [285] is a game between 
two players, one of whom we call the (blind) cat and the other the mouse.
The game proceeds in a series of rounds and is played on an undirected n- 
vertex grap-. G whose edges have positive real costs in the form of a n x n  cost 
matrix C  =  (Cjj). The rth round begins with both players at the same vertex Ui 
of the graph. The mouse then moves in a new vertex Ui+i *  Ui, not known to 
the cat, incurring a cost equal to the distance between the vertices for this 
round. Each move of the mouse may depend on all previous walks of the cat.
The cat may use a memoryless2 randomized algorithm and choose its next 
move probabilistically, as a function of its previous walks. The game stops 
after a fixed number of rounds.

1 We will study it in chapter 4.
2 Each cat move depends only on the current position and not on the previous walks.
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We will see in Chapter 4 that the competitiveness of any cat that uses a random 

walk is at least n - 1 on any graph, no matter what transition probabilities the cat uses. 

This result is true for resistive and non-resistive graphs (i.e., with and without symmetry 

of the edge weights, respectively).

As we have already mentioned, on-line games arise in connection with the on-line 

problems. Several on-line games have been referred to in the literature and some of them 

are: tree game [86], on-line game G for LUP of length 2 [89], on-line (off-line)

continuous pebble games on graphs [120], on-line dynamic game [120], on-line infinite 

games [111], layered graph traversal game [288] and the financial games for financial 

decision making [127,357].

3.1.2 Task Systems and On-line Algorithms

In practice, almost all dynamic computer systems perform any given task in on-line 

fashion, that is, without full knowledge for their future impact on the systems.

Borodin et al. [66] introduce a general model for a system on which a processing 

sequence of tasks must be performed and develop a general on-line decision algorithm. A 

number of on-line applications that are special cases of their model, include operations o f  

dynamic data structures, paging, processor scheduling and server systems.

Specifically, a task system (S, d) for processing sequences of tasks consists of a set 

S with |Sj = n states and a n x n cost matrix d = (d^) where the distance dM = d(i, j) is the

cost of moving from state i to state j. We assume that the distance matrix is non-negative, 

has zero entries along the diagonal and satisfies the triangle inequality. The cost of 

processing a given task depends on the state of the system. The input is a sequence T =

(Ti, T2 T„) of tasks where each task T* is the cost of performing the task in the ith state.

A schedule for a sequence T of tasks is a function 0 :  {1,2.....n}->S, where 0 (i) is the
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state in which the ith task is performed. The cost o f schedule 4> on task sequence T is the 

sum of all state transition costs plus the sum of the task processing costs:

C(T; <D) = £  d (<D(i-l), O(i)) + £  T  (O(i)).
i » i i » i

The objective is to minimize the cost of the schedule when the tasks are arriving in on-line 

manner.

An (off-line) scheduling algorithm for a task system (S, d) is a function /  that 

associates to each task sequence T a schedule d> = /  (T). It is easy to construct a dynamic 

programming algorithm that gives an optimal (minimum cost Opt(T)) schedule for any 

task sequence T. On the other hand, an on-line scheduling algorithm must determine in 

which st'»te to perform a given task (S, d) without any knowledge of the future tasks (i.e.,

<D(i) depends only on Ti,T:.....,T.t). The cost o f algorithm A  on sequence T, denoted by

CA(T), is defined to be C(T; a (T)).

We measure the efficiency of an on-line algorithm a  as compared to the optimal 

off-line algorithm and we say that algorithm a  is c-competitive (or it has waste factor at 

most c), if for any finite task sequence T, CA(T) - c-Opt (T) is bounded by a constant. 

The waste factor W ( a )  of algorithm a  is the infimum of all such c and the waste factor 

W(S, d) of the task system is the infimum of W ( a )  over all on-line algorithms a .

Borodin et al. [66] give an optimal (2-|S|-l)-competitive algorithm for any 

metrical task system (MTS) (i.e., a task system (S, d) in which the cost matrix d is 

symmetric), and an O (|sj2)-competitive traversal algorithm for every task system.

However, for many useful special cases of task systems, 2-|S| -1 is a very weak bound and 

there are on-line algorithms whose competitive ratio is independent of the number of 

states.
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Karlin et al. [204] show that there exists a randomized 2//„-competitive algorithm 

with a lower bound of Hn (i.e., the nth harmonic number) for the snoopy caching problem 

in the special case where the task system is uniform (i.e.,Vi*j, d(i, j) = 1). On the other 

hand, the competitive upper bound for task systems does not give very strong results, 

since the number of states in a system is often very large when it is applied to particular 

special cases. For example, if we consider paging problem1 [255,312] with k slots in the

deterministic paging algorithm that has a competitive ratio of k exists.

In the following section, we shall consider some on-line computational problems 

which are special cases of the task systems and for which we can design on-line algorithms 

with competitive factors independent of the number of states in the system.

3.2 List Update Problem
We consider the List Update Problem (LUP) or sequential search problem 

[51,173,256,292,296,312,330] which has been extensively studied in the literature under 

several formulations and different aspects. Many on-line heurestics have been devised for 

the LU problem. We investigate them and furthermore, we attempt to simply extend some 

of these on-line algorithms to handle successful and unsuccessful searches, as weil as 

insertions and deletions.

3.2.1 Problem Motivation

List update problem consists of maintaining a dictionary2 as an unsorted linear list 

of items. The input is a sequence of operations, where each operation accesses, inserts or

1 Also see paragraph 3.3.
: An abstract data structure that involves a collection of words and requests for insenions, deletions and 
membership operations.

fast memory and m virtual memory pages, the number of states is Therefore, a
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deletes an item. The cost of performing the searched item depends on its position in the 

current list Searching is done sequentially starting from the front of the list The list is 

maintained according to rearrangement rule called an update or self adjusting heuristic, 

which is applied as part of every operation. This list is referred to as self-adjusting list, 

since eventually it converges to the optimal static adjusting list After an item is accessed, 

it can be moved anywhere closer to the front of the list in constant time (i.e., with no extra 

cost) using a paid exchange. Th> , the total cost of moving the item via a paid exchange is 

the distance the item is moved. As the term "self-adjusting” suggests, our goal is to arrive 

at the optimal static adjusting of the list.

List update techniques have a lot of applications in practice since they are simple 

to use. They have been used to design data compression algorithms [49] and efficient 

simple algorithms for computing point maxima and convex hulls [48].

3.2.2 Self-adjusting Linear List Algorithms
Several heuristics for the LUP have been considered in the literature. The first 

three most common list heuristics, the Frequency Count (FC), the Transpose (77?) and the 

Move-To-Front (MTF), were proposed by McCabe [256]. A broader survey of self- 

adjusting data structures and linear list algorithms can be found in [173,325 ].

Definition of FC Heuristic: We maintain one counter per iiem to keep a count of the 

current number of requests for that item. After every operation, the counter for the 

accessed item is incremented and the list order is updated so that the items are arranged in 

decreasing order of request frequency.

In Figure 3.1, we see an example of an operation using the FC heuristic.
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I t e m s : 12 4 2 11 18 13 8 21 7 3 14 5

C o u n t e r s : 9 8 8 6

V

J 5 5 3 2 2 2 1

I t e m s : 12 4 2 1 1 8 18 1.1 21 7 3 14 5

C o u n t e r s : 9 8 8 ft 6 5 3 3 2 2 2 1

Figure 3.1: Frequency Count Example.

Definition of the TR Heuristic: Every time an accessed item moves forward one 

position at the front of the list (unless the item is already there) by interchanging cost /, 

where x  is the /th item.

Bentley and McGeoch [50] showed that transposition heuristic is not competitive.

Definition of the M TF : Every time an item is accessed it is moved to the front of the list 

with the intervening items being shifted back one position in the list to make room at the 

front ( If the item is already at the front of the list, the list is not changed.)

. . 14. L  5.12 4 2 11 18 13 8 21 7 3

MEMBER(8)

* 12 4 2 11 18 8 13 21 7 3 14 5

MTF Heuristic

8 12 4 2 11 18 13 21 7 3 14 5

Figure 3.2: List Update Heuristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 3 On-line Models and Applications 40

In practice, it is easy to check that the expected cost of TR converges to a better 

asymptotic value, but that the convergence of MTF is faster. Unfortunately, there are no 

analytic results about the behavior of TR in the literature, except for some simple cases. 

Experimental evidence (e.g., [50,51,57]) has shown that in real life situations, the lists 

using MTF  do quite well compared to lists using FC as well TR. It is a much more difficult 

problem to prove it mathematically. It should be noted that both the TR and MTF 

heuristics are instances of a more general heuristic called the Move-ahead-k-heuristic, first 

studied by Rivest [296]; that is, TR (resp., MTF) heuristic is equivalent to move-ahead'1 

(resp., move-ahead-~) heurestic.

Sleator and Tarjan [330] analyzed the competitiveness of list update heuristics and 

proved that MTF is 2-competitive. The proof is inductive, because it uses the important 

concept of a potential function in the amortized analysis as we have seen. A proof idea 

follows;

At any step, let p be MTF's list and let q be OPT's list The potential function 
<D(p, q) is chosen to be the number of pairs (called inverted pairs) of items 
which appears in a different order in MTF's list than in OPT’s list It is then 
easy to show that, at each step, C,* + A<l> < C,*, where C* and Co®, 
respectively, denote the cost incurred by MTF and by OPT at the step and A<1> 
denotes the change of the potential function at this step. Since 4> is non
negative and initially zero, it follows that MTF's amortized cost is less than 
twice the OPT's cost for the access. The analysis for paid exchanges, 
insertions and deletions is similar.

Furthermore, we can also prove that no deterministic on-line algorithm can achieve 

a competitive ratio less than 2 against a strong adversary (i.e., MTF is an optimal among

2 L
all the deterministic heuristics for LUP [173,312] with competitiveness 0  ( - — ), where

Ld ^  1

L is the size of the list).

Recently, Lai and Wood [233] have presented two new randomized list update 

heuristics:
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• The first heuristic, the randomized transposition (RT) heuristic, performs at most one 

transposition (i.e., interchange any two adjacent items) on each access and its expected 

search time is 4-competitive against an adaptive adversary that manages a static list 

(i.e., we say that RT  is 4 -pseudocompetitive or statically 4-competitive). We note that 

RT  heuristic works, if a request can be only a search; that is, insertions and deletions 

are not allowed. Although RT  is statically competitive, it is not competitive in the class 

of singe-exchange heuristics against an adaptive adversary (e.g.. RT  has a competitive 

ratio of Q(L) against TR heuristic).

•  The second heuristic, the randomized-exchange (RE) heuristic, performs at most one 

exchange (i.e., interchange any two items) on each access and is 4-pseudocompetitive 

(resp., 8-competitive) against an adaptive, static (resp., on-line: e.g., MTF heuristic) 

adversary. Thus, one obvious open problem is to improve the analyses of RT  and RE, 

or to show that their analyses are tight.

Sleator and Tarjan introduced a very simple method of maintaining a set of linearly 

ordered items in a Splay Tree; that is, a dynamic binary search tree. The objective is to 

maintain a tree, using only tree rotations so as tc minimize the total running time of a 

sequence of dictionary operations. A splay tree performs tree rotations according to a 

simple procedure called splaying. They proved that the amortized cost to access an item 

in their scheme is O(logn) by using a simitar way to that in the proof of MTF  algorithm. 

The famous and still unresolved Splay Tree Conjecture1 states that splay trees have a 

constant competitive ratio against a dynamic optimal off-line strategy. Such a result and 

properties would be analogous to LUP's ones, whereas splaying has been proved to be 

competitive only when compared with static algorithms.

1 A more complete definition may be found in die mice surveys of applications of amortized analysis 
[173,325],
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Recently, Sherk [303,304] generalized splay trees defining the k-ary Search Trees 

for some fixed k > 2 and he extended the heuristics, splay tree conjecture and Sleator - 

Tarjan'& splay tree results. With k = 2 and splay trees used in place of 2-splay trees, his 

Dynamic Optimality Conjecture (k-DOC) for k-splay trees is Tarjan s Dynamic 

Optimality Conjecture for splay trees (DOC: on all sufficiently long request sequences, 

splay trees are as fast as any implementation using a binary search tree (not just those 

using a static tree); see [313]). In addition, it is not clear that any doubly optimal off-line 

strategy exists for dynamic binary trees. If such a strategy exists, then it is sufficient to 

prove that DOC maintains a balanced tree in a restricted class of data structures. This may 

be an important step towards resolving these conjectures.

3.2.3 Randomized Competitive List-Updatc Algorithms
Reingold et al. [292] used the power of randomization to improve the 

deterministic previous results and the competitiveness of the MTF algorithm. We consider 

a randomized version of MTF for LUP as follow;:

Algorithm BIT

Let b(x) be one random bit for each item x, which is randomly initialized.

From then on BIT runs completely deterministically: after finding x, BIT  

first complements b(x) and then moves x  to the front of the list if b(x) = 1.

Figure 3.3: A Randomized MTF  Algorithm for LUP.

Roughly speaking BIT is “move-to-front every other access” and it is 1.75- 

competitive against an oblivious adversary.

BIT can be generalized to a family of COUNTER algorithms, which are a slightly 

more complicated.
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Algorithm COUNTER (s, 5)

Let s be a positive integer and let S be any non-empty subset of [0,l,...,s- 

1}. The algorithm keeps a mods counter for each item and each value 

chosen independently with equal probability. At a request to item x, 

COUNTER decrements the jc’s  counter mods and then moves x  to the front 

of the list via free exchange if x’s counter is in S.

Figure 3.4: A Generalized Randomized M TF  Algorithm for LUP.

BIT  is COUNTER \{1}). In fact, COUNTER algorithm can be modified to 

obtain a competitive ratio of >/3 [292]. It has been recently proved [330] that no 

randomized algorithm can achieve a competitive ratio better than 1.5, while the lower 

competitive bound of any algorithm for a list update problem cannot be better than 1.27 

against such an oblivious adversary in a standard model (Reingold et al. [292] have 

improved the lower bounds for three- and four-item lists to 1.2 and 1.25, respectively).

All the above algorithms for the List update problem share the same drawback as 

MTF, that is, they do not efficiently handle unsuccessful searches, additions and deletions 

as well. In fact, it is possible to modify the algorithm BIT to handle successful and 

unsuccessful searches as well as insertions, but not deletions.

Algorithm BIT-UA 

Deterministic step: Let p  and s be two bits for each list item x. If xp is 

ahead of x  in the list, then p = 0; otherwise p = 1. Similarly x, is defined. 

Find x by finding both xr and x„ in order to finish an unsuccessful search. 

Random step: Let a third bit, b(,v), be the random bit. Initially, b(jc) is set 

to 0 or 1 with equal probability. After a successful ftnd(x), we toggle b(x). 

If b(jc) changes to I, we move x to the front, otherwise the list remains 

unchanged. For an unsuccessful search, for each of the two boundary keys
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(xp and Xj), we toggle the random bit; if a key’s random bit changes to 1, 

we move it to the front (i.e., BIT-UA preserve their relative order). The p, s 

bits ate maintained with constant extra time using the techniques described 

in [292].

Hgure 3.5: A Randomized Algorithm for LUP to handle Successful and Unsuccessful 
Searches as well as Insertions.

By dividing the expected change of the potential function into three parts and using 

similar techniques as in [180,181,292], we find that the algorithm BIT-UA achieves a 

competitive factor of 2 5 (i.e., 2.1.75-1) by summing up all successful and unsuccessful 

searches. In addition, if BIT-UA allows insertions as well, this does not affect its 

competitive analysis. In fact, BIT-UA algorithm can be improved using similar techniques 

as for COUNTER algorithms [292] to achieve a competitive ratio of 2-V3-1 (<2.46142) 

against an oblivious adversary.

Recently, Hui and Martel [179] have presented an improved version of BIT-UA 

which was also able to handle deletions efficiently. They also proved that their new 

modified algorithm BIT-UAD for the list update problem is 6-competitive against an 

oblivious adversary when considering successful and unsuccessful searches, insertions and 

deletions as well. It is also interesting to see whether we can extend the amortized 

analysis, which uses both the accounting method and the potential factors approach 

[100], for the list update algorithms to include deletions as well.

3.2.4 Weighted List Update Problem

The traditional model [50,173,312] for LUP may be generalized if we change the 

cost of the operations that can be performed on the list. We study two further 

generalizations, the weighted list [104,105] and the paid exchange {P*) models [312,292].
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For these generalizations, several algorithms with different competitive ratios have been 

considered.

In the weighted list update problem {WLUP), any item of the list has an associated 

cost that depends on the sum of the costs of the preceding items. The goal of the problem 

is to minimize the overall cost of processing a request sequence and design efficient on

line algorithms.

Two MTF versions for WLUP are the following:

• The Counting MTF {CMTF).
This is a deterministic greedy strategy which uses one real counter per item 
to decide whether moving the accessed items to the front.

•  The Random MTF (RMTF), which is a randomized version of CMTF using 
biased coins instead of a counter.

It has been shown in [104] that both of the greedy on-line strategies are 2- 

competitive against a lazy1 adversary (i.e., an adversary that uses an (optimal) static 

arrangement of the list, without resorting the list after each request).

A simple application of the WLUP is the tree update problem {TUP), where items 

are to be found in the tree instead of in a sequential list. The tree is represented by a list of 

successors and is searched by a left-to-right depth-first search. Thus, any instance of the 

WLUP can be transformed into an instance of TUP using a tree of depth 1. Therefore, 

AND-OR trees and Directed acyclic graphs (DAGs) under several visiting algorithms

1 In ihe context of server problems [254], a la y  strategy for the adversary consists in moving as few as 
possible items (servers) to service requests [104,285]. Clearly, die lazy adversary for LUP does not move 
any item of the list.
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could exploit efficient solutions for the WLUP and should lead to the design of 

competitive algorithms [103,105].

Furthermore, another generalization has been studied, where the list searches to 

retrieve sets of elements rather than just one item at a time. D ’Amore [103] presented the 

following deterministic algorithm Move-Sets-Front (MSF, for short) for the list update 

problem, which generalizes the well-known MTF.

Algorithm MSF

This algorithm moves to the front of the list any accessed set of items, without 

changing either their relative ordering or that of the other items.

Figure 3.6: A Deterministic On-line Algorithm for LUP with Retrieval Sets.

It has been shown that MSF algorithm is (l+3)-competitive, both in the standard 

and in the wasted work models [103], where 3 is the unknown maximum size of the sets 

that will be requested. A randomized version of MSF is developed as follows:

Algorithm BITS (i.e., BIT-for-Sets)

It associates a bit with each element in the list and the n bits are initialized 

uniformly and independently at random. Whenever one accesses a retrieval 

set rJt the bit of the last element of r, in BITS's list is complemented and if it 

changes to 1, the accessed set is moved to the front of the list, otherwise it 

remains unchanged.

Figure 3.7: Algorithm BITS for WLUP with Retrieval Sets.

3
Algorithm BITS is (1 + — 3)-competitive against an oblivious adversary both in the

4

standard and in the wasted work models [103]. Again, both MSF and BITS algorithms
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have the same drawback; that is, they handle only successful searches. We can easily 

modify MSF (resp., BITS) to get the randomized algorithms MSF-U (resp., BITS-U), in 

order to handle successful and unsuccessful searches as well as insertions, but not 

deletions. Easily, the algorithm MSF-U (resp., BITS-U) has a competitive ratio of 1 + 2|S

(resp., 1 + -^(3) against the same models as in the successful case. For these

generalizations of the traditional list update problem, some properties of the optimal (off

line) algorithm do not hold any more and hence, they provide negative results as well as 

some general interesting open problems [103.104], For example: can we design 

randomized algorithms that allow us to overcome the difficulties o f the deterministic 

ones?

Finally, Luccio and Pedrotti [359] have considered LUP in parallel computation 

(PLUP), using the EREW-PRAM model [210]. The MTF strategy has been adopted to 

solve LUP using n processors, one for each list allowing to move items from one list to 

another. This parallel MTF strategy (PMTF) is a deterministic (n2 +l)-competitive, while 

a lower bound is 2n. They showed that randomization helps for PLUP drastically reducing
Q  O

the competitive ratio to *|-n, versus a lower bound ^ n .  As a side result, the same

competitive ratios (i.e., 2 for the deterministic and for the randomized case) are

derived for the sequential LUP when n = 1 as we have already known (see [292,312] as 

well). Thus, it would be interesting to design efficient competitive algorithms for other on

line problems in parallel computation.

3.3 Paging Problem

We consider the Paging problem [141,255,261,312,347] which is of fundamental 

interest among on-line problems. We especially examine three variants on the standard 

model for the competitive analysis of paging algorithms which allow randomization, weak 

and strong lookahead.
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3.3.1 Problem Motivation and Complexity Results
The paging problem is defined as follows: Consider a computer system which has 

two-level memory, a fast memory (or equivalently a cache or hit) with capacity for k items 

(representing pages or servers) and a slow memory with unlimited capacity. A set of 

pages is to be kept in storage at all times where n > k. In response to each request, the 

requested k pages must be moved into the fast memory and the other n - k pages (faults) 

will reside in the slow memory.

When a program requests access to a page that lies in the slow memory, we say 

that a page fault occurs. It is typically expensive to handle such a page, because some 

page (or pages) must be evicted from the fast memory to make room for the new page. 

The goal of the paging problem is to choose which pages have to be evicted in order to 

minimize \hefu~!r rate (i.e., the number of page faults) that occurs.

In terms of our formulation, a page replacement strategy or a paging algorithm is 

on-line (resp., off-line) if the algorithm chooses which page to evict without (resp., with) 

knowledge of future requests.

Here, a schedule is the appropriate request sequence of evictions and the number 

of evictions is the cost o f  the schedule. The cost of strategy S on a sequence r for a given 

size k of fast memory is the cost of the schedule produced by the deterministic algorithm 

and it is denoted by Cr (S, k). In the case of a randomized paging strategy, the cost of the 

schedule is a random variable and the cost of the strategy refers to the expected cost of the 

schedule.

Now, the issue is how we can analyze such on-line algorithms. The classical 

worst-case analysis is useless, because if arbitrary reference sequences are allowed, then
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an adversary that always references the last discarded page can force any paging algorithm 

to fault on each reference.

Average-case analysis is also problematic, since it requires a statistical model o" 

the reference sequences. It is extremely difficult to produce a realistic model, since the 

pattern of access changes dynamically with time and with different applications. 

Nonetheless, several of the early analyses of paging algorithms were performed in the 

independent reference model, which assumes a fixed probability distribution on the 

reference sequences [144,307],

Sleutor and Tarjan [330] used the competitive analysis, which avoids the 

assumptions of probabilistic analysis and has the power of differentiating paging 

algorithms. Before we develop and analyze specific paging algorithms using competitive 

analysis, it would be useful to know that the synthesis of optimal on-line algorithms is, at 

least theoretically, achievable.

Proposition 6.1. Generally, it is undecidable if a given paging algorithm A achieves a 

given competitive ratio.

Proof: For every i, we could design an algorithm a, which follows a known competitive 

algorithm on the jlh  request if the Turing machine on input i halts in at most j  steps, or 

else it follows a known algorithm with no finite competitive ratio.

The above undecidability result holds as well as for any extended on-line paging 

problem (e.g., the k-server problems).
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33 ,2  Paging Algorithms
We consider the following paging algorithms:

OPT or M IN  Algorithm: Belady's algorithm [45], which yields an optimal (minimum 

cost) off-line scheduling for paging by evicting the page (item) whose next request is 

further in the future.

LRU: Least-Recently-Used, which evicts the page that has been requested least recently.

RAND: Whenever a miss occurs, a cache location is chosen at random and the page 

(item) in it is evicted. The algorithm is memoryless1 but uses logn bits of randomness per 

miss.

FIFO: First-In-First-Out, which evicts the page (item) that has been in the fast memory 

the longest.

FWF: Flush-When-Full, which evicts all pages (items) when space is needed.

RFWF: Random-Flush-When-Full [254]. Same as FWF, except that a random invalid 

entry is selected for eviction. The algorithm uses n memory bits and up to logn random 

bits per miss,

MARK: The Marking Algorithm [141,347], a randomized paging algorithm which evicts a 

page chosen uniformly at random from the set of pages not in the fast memory of FWF 

when memory is needed.

1 An algorithm with zero memory is deemed memoryless.
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We can easily verify that all of the above presented strategies, except OPT, are on

line and all are conservative; a paging algorithm is conservative if the following holds:

(i) no evictions before k + 1 distinct pages have been requested, and

(ii) at most k evictions have been incurred during any subsequence of requests 
to at most k distinct pages.

Unfortunately, the above facts are not practical and variant paging algorithms that 

have the same competitive ratio may behave very differently in practice. On the other 

hand, good paging algorithms, such as FIFO and LRU are k-competitive, and hence best 

possible in their model. They have been observed to achieve a page fault rate, on reference 

sequences that arise in practice, while LRU has been almost always superior to FIFO 

[348].

3.3.3 Randomized Paging
Randomization can help on-line paging algorithms. Let k (resp., h) be the fast 

memory size of an on-line strategy (resp., the O P T ). Generally, the competitive ratio of an 

algorithm depends on k and h, where h < k. For the special case h = k, deterministic on

line algorithms are at best k-competitive, whereas MARK is 27/*-competitive [347].

McGeoch and Sleator [261] have presented a more complicated randomized 

paging algorithm which has a competitive factor of //* (the k-rh harmonic number). On 

the other hand, no randomized on-line algorithm is less than /^-competitive.

Young [347,348] generalized the above results showing that, when h < k, MARK

algorithm is 2 (ln — — - Inin— — + —)-competitive if —-— > e and 2-competitive 
k - h  k - h  2 k - h

otherwise. He also showed that the competitive ratio of any randomized on-line paging
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k k 2
algorithm is at least Hk, if h = k‘, and at least In  - Inin  - ------- , if h < k and

k - h  k - h  k - h

> e 2. Here, we note that when  * £ e the analysis of MARK shows that its
k - h  k - h

competitive ratio is at most 2.

33.4  Paging with Weak and Strong Lookahead

We introduce two new on-line models of lookahead for on-line paging problems 

and we study their influences on competitive paging algorithms.

According to Young [347], a paging strategy is on-line with a resource-bounded 

lookahead o f size I (i.e., the intuitive weak lookahead o f  size I) if it sees the present 

request and the maximal sequence of future requests for which it never incurs more than I 

evictions on any such request subsequence, where / > 1 is an integer.

In this model, the paging algorithm is a given lookahead queue with known 

contents which may either service the request at the head of the queue (provided there is 

one) or add an additional request (if there is one) to the end of the queue.

Young presented the following randomized on-line algorithm MARK(l) with a 

weak lookahead of size /:

Algorithm MARK(l)

At the beginning of each phase execute an initial step: Add requests to the end of the 

queue until either k distinct items or / new requests are in the queue (or there are no more 

requests). Choose pages (items) uniformly at random from among the pages in fast

1 An alternate proof of the lower bound when h = k is given by Fiat et al. [141], The advantage of this 
proof is that it generalizes nicely to h < k.
2 e is the base of natural logarithms
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memory which are not contained in the current lookahead queue and evict these pages. 

Finally, apply the MARK algorithm after this initial step.

Figure 3.8: A Randomized Paging Algorithm with a Weak Lookahead.

2k
MARK{1) algorithm is max{ — , 2}-competitive, while its deterministic version 

DMARK(l), which only allows arbitrary choices of items, has a competitive ratio of 

2 (/n-y+l) [347].

However, the model of weak lookahead is not realistic in practice, but it is 

theoretically interesting and leads to reduced competitive ratios. The goal is to find a new 

model which has both realistic as well as theoretical interest and can significantly improve 

the competitive ratios of on-line paging algorithms.

A paging algorithm is on-line with strong lookahead11 if it sees the present request

and a sequence r  = (r(l), r(?).... r(m)) of m future requests that contains / pairwise

distinct pages, where r(t) denotes the request at time t.

Now, all on-line lazy1 paging algorithms can be easily extended to a new model of 

strong lookahead of size / < k-2, where k > 3 is an integer. For example, the deterministic 

LRU(l) (or the randomized MARK(l)) paging algorithm with strong lookahead / 5  k-2 is 

(k- O-competitive (resp., 2 H,k-/rCompetitive) only against the oblivious adversary.

Furthermore, all lazy on-line algorithms with strong lookahead can be simply 

generalized, if the algorithms do not use full lookahead but rather serve the request

1 More practical on-line models might be considering loose competitiveness of strategies with regular 
lookahead [347], assuming an average (rather than consistent) weak lookahead of size /, or assuming that 
the sequence is fixed by an adversary of the lookahead.
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sequence in a series of blocks instead of list items only. For example, the new obtained 

LRU(l)-B and RANDOM(l)-B lazy paging algorithms, with strong lookahead I £ k-2 using 

blocks, are (k-/+l)-competitive. The above result shows that LRU(l) (resp., LRU(l)-B) is 

optimal (resp., nearly optimal).

Clearly, if / = k -1 and the total number of different pages in the memory system 

equals k+1, then LRU(l) is 1-competitive because it behaves like Belady's optimal paging 

algorithm MIN. On the other hand, the competitive ratio of the (lazy) RANDOM(l)-B 

algorithm does not achieve any improvement upon the previously presented RANDOM(l) 

algorithm with strong lookahead I < k-2.

Finally, Raghavan and Snir’s results [285] can be extended as follows:

Theorem 3.1. Let I > k-2 with k>  3. k€ 2? and let A b e  a deterministic (or randomized) 

on-line lazy paging algorithm with strong lookahead I. I f  A is c-competitive, then c>  (k- 

l, (resp., c > Hk.t) against only the oblivious adversary.

Proof: The proof is similar to Raghavan's proof [285] by also applying Yao’s min-max 

principle [344].

The proofs of all above generalized results are almost similar to those of the weak 

lookahead and are hence omitted. Actually, these upper bounds can be slightly generalized 

using Young’s extension results [347], but they are weak and therefore their 

corresponding on-line paging algorithms seem not to take full advantage of the strong 

lookahead. It is surprising that the advantage of lookahead was not simply a tradeoff in /, 

but rather produced a threshold effect. Furthermore, the point at which lookahead 

becomes an advantage is quite high.
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3.3.4 Competitive Distributed Paging
In this section we study the competitive analysis of algo .dims for on-line paging 

problems in a distributed environment. Especially, we deal with the file  (or page) 

migration and replication problems, as well as the more extended abstract data file  

allocation (or assignment) problem.

The fiU allocation problem (FAP) [40] is the distributed memory management 

problem for a globally addressed share memory of large multiprocessor systems, which 

typically limited local memory capacity. A global shared memory in multiprocessor system 

is modeled by distributing the indivisible blocks such as physical files (pages) among the 

local memories. However, a full file may be replicated in various processors throughout 

the network at a cost equal to the distance traveled times the page size factor D and 

discarded over time under the following assumptions:

• At least one copy of every file must be stored somewhere in the network; and

• the multiple conies must be kept in consistency (i.e., files cannot be split among 

processors).

The objective is to device residency on-line strategies (i.e., in the presence of on

line and unpredictable access pattern) that decide which local memory should have the 

copy of a readable and writable file requests so as to optimize the total communication 

cost in processing a sequence of file-accesses.

The file allocation problem is the simultaneous solution to two partial proolems, 

the page migration and page replication problems [58], FAP collapses to page migration 

(resp., replication) problem if only writes (resp., reads) occur. Clearly, the page
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replication problem is a fundamental on-line problem whose simplest case corresponds to 

the ski rental problem.

The problem of designing efficient file allocation algorithms has been studied 

from both the practical and theoretical point of view [41,47,58,85,226,354]. We study the 

transformation of some standard or centralized model [204,313] (i.e., using only global 

information of the system) into the more realistic distributed model.

Black and Sleator [58] have considered an optimal deterministic 3-competitive 

algorithm for the migration problem on trees, uniform networks and metric spaces. They 

have also showed that no deterministic on-line strategy could be better than 3 (resp., 2)- 

competitiveness for the page migration (resp., replication) problem on any metric space 

of three points.

Chrobak et al. [85] have proposed the following randomized, migration algorithm 

when the uniform metric space M has only two points, x and v.

Algorithm PAND MIGRATION 

Suppose the current offset function1 (w(jr), w(v)) = (0, |3) (symmetrically, if the offset

function is (0, 0) ), where 0 < (3 < D. This algorithm uses the probability distribution that

D + P a , D * Pplaces mass p& = n -r- on x and 1 - Pp= —5fv~ on >•

Figure 3.9: A randomized Page Migration Algorithm for any Metric Space of Two Points.

1 An w n r k ftnciion  [58,89] whose infimuu alue is zero.
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Algorithm RAND-MIGRATION achieves a competitive ratio of Cd = 2 + ■—

which is optimaI for the page migration problem on a metric space of two points. This 

algorithm can also be extended to a randomized Co-competitive strategy for a uniform 

metric space and any tree [85].

The following Table 3.1 summarizes the randomized, distributed competitive, 

migration algorithms against oblivious adversaries (otherwise, it is specified) and their 

performance ratios.

Network topology Competitive ratio Reference

Any network 1 + 0 = 2.61 1 [85]

Uniform networks ((5 + Vl7 )/4) = 2.28 [851

Metric spaces of 2 points Co ; [85]

Continuous trees c 0 [85]

Hypercube and meshes (in Lt metric) CD [85]

Metric space of 3 points 3 [58,85]

Table 3.1: Randomized Page Migration Algorithms and their Competitive Ratios.

Next we describe a randomized po-competitive algorithm for replication problem 

on trees and uniform networks, which is optimal for all values of page size D, where p =

d £ _ l and Pl, = r ^ _

1 $ the golden ratio and llie on-line algorithm is against an adaptive adversary.
2 Co = 2 + 3^  , where D is the page size factoi
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Algorithm RAND-GEOMETRIC 

Choose a random number i from the set {1,2..... . D} with probability p, = a  p '1, where

a  = * . Process the request sequence and maintaine a count (initially zero) on each
pu - 1

edge of the tree. If there is a request at node \> that does not have the page, then all counts 

along the path from o to the closest node with the page are increased by 1. When a count 

reaches the value of the randomly chosen number, the page is replicated to the child node 

of the correspondng edge.

Figure 3.10: A Randomized Page Replication Algorithm for Trees and Uniform Networks.

The above RAND-GEOMETRIC algorithm can easily be extended to a 2pD- 

competitive strategy for a ring by cutting it at the point opposite (or uniformly at random) 

to the starting node of the ring which initially has the page. We observe that lim po =
D-*~

3.16 (i.e., e is the natural logarithmic base). Moreover, if we don’t use the onlyC " 1

one random number which is used during the initialization step, then the above algorithm 

becomes a completely deterministic, ‘/-competitive strategy for replication problem. Koga 

[226] has also presented another interesting on-line replication algorithm COINFUP 

which achieved a competitive ratio of 2 for trees and 4 for rings.

In the following Tables 3.2 and 3.3, we summarize the competitive performances 

of the replication algorithms against an oblivious adversary.
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Network topology Competitive ratio Reference

Trees and uniform networks 2 [58]

Trees and uniform rings 1.58e-1
[4,356]

Ring 4 [47]

Ring1 3.16 [4]

Any network topology 7 [29]

Table 3.2: Deterministic Page Replication Algorithms and their Performances.

Network topology Competitive ratio Reference

Trees (1+ 1.71 [226]

Rings 2-<2+V3) [41]

Circles 4 [92,226]

Rings2 4 [226]

Table 3.3: Randomized Replication Algorithms and their Competitive Ratios.

Awerbuch et al. [29] have proposed a various centralized, deterministic migration 

algorithm on arbitrary network:

Algorithm MTM (i.e., Move-To-Min.)

Divide the request sequence into phases. Each phase consists of D consecutive write

requests at processors pi, p; pc. During a phase the algorithm doesn’t move the copy

of the file. At the end of phase, migrate the copy to processor pm in the network such that

D
X </(/>.,pm) is minimized. 

i = 1

Figure 3.11: A Centralized Migration Algorithm on Arbitrary Networks.

1 Either a deterministic or memoryless algorithm.
2 Against an adcrtive adversary.
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Theorem 3.2. Algorithm MTM is 7-competitive on arbitrary network topologies.

Proof sketch [29]; We show that AO < 7- CosUdv - CosturM using the potential function 

0  =  2 /> d ( a o ,  p), where oto (resp., p) denotes the position of the adversary’s (resp., the 

on-line) copy at the beginning of a phase.

The same authors [29] extended the above algorithm MTM  for the FA problem 

which is the simultaneous solution to both migration and replication problems. They 

proposed a centralized FA (i.e., CFA for short) (resp., a distributed FA (DFA)) algorithm 

which is 0(/<?£n)-competitive (resp., 0(/og4n)-competitive).

Recently, Bartal et al. [40] presented a simple distributed version of the 

deterministic FWF [204] and those of the randomized MARK algorithm [141] for the file 

allocation problem on specific network topologies (e.g., trees and uniform networks).

Furthermore, Awerbuch et al. [28] proposed a new randomized competitive 

distributed paging algorithm (so called Heat & Dump) against oblivious adversaries for 

uniform networks, whose competitive ratio was logarithmic in the local storage capacity.

We observe that all results on the performance ratios of the distributed paging 

algorithms demonstrated the power o f  randomization for the page migration, replication 

and file  allocation problems. Additionally, some important open questions for these 

problems are the following:
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• Consider various assumptions for these problems in order to address real-life concerns 

(e.g., issues regarding delay and congestion)-, and

• Close the gaps left in the upper and lower competitive bounds for arbitrary networks.

In conclusion, we like to point out that the general structure of combining 

deterministic and randomized algorithms, with a minimum competitiveness, is a promising 

tool for designing new efficient on-line strategies.

3.3.5 Recent Related Results of the Paging Problem

Recently, considerable work has been done to competitive analysis of on-line 

algorithms in order to extend the Paging Problem and improve their lower competitive 

bounds.

Borodin et al. [65] considered the paging problem on restricted classes of inputs 

that occur in practice. In their work “Competitive paging with locality o f reference”, they 

assume that an on-line algorithm knows in advance if the input it will receive falls in a 

particular class. In this sense, the problem is less “on-line”, because it restricts the 

arbitrariness of the adversary in generating a sequence of requests. The access graph, a 

model of a program’s reference patterns, has been developed to determine a restricted 

class of inputs. Many classical algorithms (e.g., LRU, FIFO and marking algorithms) of 

paging problem on the access graphs, (also, on their further extension to directed and 

structured graphs [205] have been reanalyzed deriving useful properties and nice lower 

bounds on their competitiveness.

Feuerstein et al. [137] studied another extension of the paging problem to graph 

problems. This includes the Path paging and Connectivity paging problems in graphs, 

which, besides their theoretical interest, have significant applications to the memory
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management problem of data structures for graphs. An important issue would be to 

extend these results to weighted versions of paging problems making them more 

applicable in practice.

Finally, in the next section, we will study two other extensions of the paging 

problem, the problem o f maintaining caches in a multiprocessor system [254] and the k- 

server problem [255]. These problems are based on more general and complex models, 

but they share essentially the same fundamental serving (paging) property (i.e to serve 

(page) the request).

A great truth is a truth whose 

opposite is also a great truth.

Christopher Morley
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The k-Server Problem and Algorithms

The interest o f  science lies in the art o f making science.

Paul Valdry

In this chapter we introduce two generalizations of the paging problem, the 

weighted caching and k-server problems. Particularly, we enumerate the weighted 

caching and k-server algorithms summarizing relevant previous work.

Furthermore, we present some new results about the strong competitiveness of the 

2-server problem against a lazy adversary and we extend Coppersmith et al. theory on 

resistive graphs [98,99] to non-resistive spaces (i.e., no symmetry of the edge weights 

(costs)). We develop methods for the synthesis of the random walks, and use them to 

design competitive randomized on-line algorithms for the k-sener problem and its well- 

known related problems (i.e., task systems and cat-mouse game) on non-resistive spaces.

4.1 The Weighted Caching and k-Server Problems

4.1.1 The Statement of the Problems

The weighted caching problem is a generalization of the paging problem in which 

the cost of evicting an item (page) n is a non-negative function W(r,) of the item (i.e., the 

costs of moving different items into the cache differ). This scheduling problem as well as
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the disk-head motion planning problem [254,255] were first introduced by Sleator and 

Tarjan [312].

The k-server problem is a further generalization and was first formulated by 

Manasse et a l  [255]. In this problem, the cost is a non-negative function dfrj. r,) of the 

item n evicted and the item r, requested, and the fast memory is assumed to be initially full. 

Except for the special case of weighted caching, the distance d is assumed to be metric 

(i.e., symmetric, satisfying both the triangle inequality and dfo, r,) = 0 for every i *  j).

The famous k-server problem is an appealing special case of metrical task systems 

and has been one of the most extensively studied on-line problems in the past several 

years. A reason for the interest is that the k-server problem is a natural abstraction of 

paging, weighted caching and planning the movement o f  diskheads, where k mobile 

servers reside in a metric space [254]. In addition, this problem is both practical and 

simple to be defined.

The k-server problem may be transformed into the following network problem. 

There are k servers which are free to move around from point (“request”) to point in a 

metric space, and each request must be serviced by some server moving to cover the 

corresponding point in the space. For simplicity, we can assume all servers to be on some 

arbitrary points initially.

The cost of a k-server (on-line or off-line) algorithm is the total distance traveled 

by the servers. A dynamic programming algorithm can be used to compute the cost of the 

optimal off-line algorithm handling a request sequence [255].

If the metric space is the uniform (or unit) metric space U„ with n points (i.e., the 

distance between any two points is 1), then the k-server problem reduces to the paging
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problem with points in the space corresponding to pages (items) of slow memory and 

servers corresponding to page slots in fast memory.

4.1.2 Weighted Caching and k-Server Algorithms

Many natural algorithms for the k-server problem fail to achieve a bounded 

competitive ratio. For example, consider the following greedy algorithm: “Answer each 

request by moving the closest server”. In any metric space where arbitrary small positive 

distances occur, the greedy algorithm can be defeated by placing requests alternately at 

two points that are sufficiently close together. The greedy algorithm will construct an 

unbounded cost by shuttling the same server back and forth forever. On the other hand, 

the performance ratio of optimal off-line algorithms can be bounded by stationing a server 

permanently at each of the two points on the same request sequence.

We consider the following weighted caching and k-server algorithms: 

o p t:  The algorithm that produces an optimal k-server or weighted caching schedule. 

BALANCE: The Balance algorithm or BAL [254,255,347] for k-servers:

Algorithm Balance

For each server the algorithm maintains the total distance it has moved, since 
the start of the request sequence.
If the server is currently at point i, the distance traveled by i so far is denoted by W,.

Now consider a request at a vertex j.

•  If j  is already covered by a server, then BAL does nothing.

•  If j  is not covered, then BAL moves the server i to the point j, where i is chosen

to minimize + d(i, j).

Figure 4.1: The Algorithm Balance (BAL) for k-Server Problem.
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In other words, BAL moves any server that would have the smallest cumulative 

cost after moving. As indicated by its name, the balance algorithm tends to use all of its 

servers equally.

GREEDYDUAL: The greedy dual algorithm [347] for weighted caching:

The algorithm maintains values (credits) on the servers. Initially the value of 
server is the weight of the node it serves. When an unserved point (“request”) 
is requested, the server values are decreased by the minimum server value, 
some zero-valued server is moved and its value is raised to the weight of its 
new point. When a served point is requested, the server value is reset 
anywhere between its current value and the weight of its point

The GREEDYDUAL algorithm may be described as follows:

Algorithm GREEDYDUAL 

Each server has a varying amount of credit. In response to request 0, all servers are 

placed on ro with no credit. In response to each subsequent request j  to node r,,

1. If node Tj has no server:

a) Each server's credit is increased equally until some server has enough

credit to move to r,-. (If a server is currently on r,, it must have d(r„ r;) = 

w(rj) credit to move to r;.)

b) One such server serves request;, giving up all its credit

2. If node r, has at least one server:

a) One such server serves request j.

b) Unless the server has not yet moved, it gives up an arbitrary amount

(possibly none) of its credit

Figure 42: The GREEDYDUAL Algorithm for Weighted Caching Problem.
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The performance of on-line algorithms for weighted caching and k-server problems 

have been analyzed using competitive analysis. Manasse et al. [255] show that no
fa

deterministic on-line k-server algorithm is better than ( - —^-j-)-com petitive‘ in any

metric space (or graph with symmetric edge weights satisfying the triangle inequality) with 

at least k+1 points. Chrobak et al. [87] have shown independently, that balance algorithm 

(BAL) is at least k-competitive (when h = k) for the general k-server problem in any 

metric space with at least k+1 (distinct) points. The proof uses a nice averaging 

technique:

Proof idea:
For every on-line algorithm a , the adversary constructs a sequence such that 
there are k different algorithms, which have a total cost equal to a ' s cost.
Thus a ’s cost is at least k  times greater than the cost for one of these 
algorithms. Since the lower bound holds for any metric space with at least 
k + 1  distinct points, the proof is similar to the proof that the competitiveness of 
any deterministic paging algorithm is at least k. I

The proof can easily be extended for randomized algorithms against an adaptive on-line 

adversary.

GREEDYDUAL is a new algorithm that generalizes LRU, FWF, MARK and BAL

ft
with optimal ( ------------^competitiveness for weighted caching. This algorithm is of

k - h  + l

practical interest and gives the first result we know of showing reduced competitiveness 

when h < k for any problem other than paging. GREEDYDUAL is a primal-dual, 

deterministic, on-line weighted caching algorithm of theoretical interest as well, because 

the motivation by the discovery of a general technique (so called the Primal-dual 

bounding technique [347]) is implicit in the analysis of the algorithms it generalizes [347].

1 Remember that h refers to the fast memory size of the optimal off-line algorithm OPT.
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A sketch o f  the primal-dual bounding technique is the following:

“We formulate the problem as an integer linear program (ILP), so that each 
solution to the problem of ILP yields a linear program (I P ) (which, 
incidentally, has optimal integer solutions) of equal cost. The cost of any 
feasible solution to the dual of this LP is a bound of the optimal cost”.

The GREEDYDUAL implicitly generates a solution to the dual program (DP) of 

LP. The goal of the dual solution is actually two-fold:

• GREEDYDUAL uses the structural information that the solution provides about the 

problem instance to guide its choices, and

• the cost of the dual solution of this linear program can be used as a lower bound and 

also correlates it with the on-line algorithm to show competitiveness.

Primal-dual technique is also important for approximation problems [272], 

including on-line problems, because it helps reveal combinatorial structure, especially how 

to bound optimal costs. This approach has been explicitly used for finding approximate 

solutions to NP-hard connectivity problems [160].

Generally, duality has been used to obtain lower bounds on the complexity of 

randomized algorithms [100], on randomized communication complexity [247] and m 

other contexts; for example Von Neumann’s min-max Theorem for zero-sum games may 

be viewed as a special case of linear programming duality [344], In particular, we shall 

use this technique to reanalyze the weighted matching on-line algorithms (see section 

5.2).

4.1.3 More Related Work

There has been considerable work on k-server problems. Manasse et al. posed the 

following famous conjecture:
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The k-Server Conjecture: In any metric space there is an on-line algorithm which is

k-competitive.

They also gave an elegant proof that no deterministic algorithm can be better than 

k-competitive.

Much excellent work has been done (e.g., see [82,191]) in attempt to solve the k- 

server conjecture which has been verified only for k = 2 by the present time. It has been 

open for some time to find a general algorithm for k-server problems such that there is a 

function of k which bounds the competitiveness of this algorithm in any metric space. As 

a result, researchers mostly turn to special cases (e.g., to restricted metric spaces).

Manasse et al. [255] presented optimal k-competitive algorithms for k-server 

problems in any metric space with n points, when k = 2 or n-l. However, implementing 

their algorithms requires space linear in, and time quadratic in, the minimum of the number 

of requests seen so far and the number of points in the metric space. It is more desirable 

to have an algorithm the time and space complexity per request of which is a function of 

the number of servers.

Irani et al. [191] and later Chrohak etal. [82,84] showed two algorithms that only 

maintain one variable and only perform a constant number of operations to decide which 

server has to service a particular request. Both algorithms have a constant competitiveness 

for the 2-server problem.

Chrobak et al. [87,285] showed an optimal k-competitive algorithm when the 

metric space is the real line. The algorithm is very simple and follows:
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Algorithm Real-line

Upon a request to a point /, if / is to the left or to the right of all the servers, just move the 

closest server. Otherwise move one server directly to the left and another directly to the 

right of i at the same speed. When one of the servers reaches i, then servers stop.

Figure 4.3: A k-Server Algorithm for a Real Line

This k-competitive on-line algorithm can naturally be extended for V servers on 

trees as well [86]. Algorithm GREEDYDUAL for the weighted caching problem appears 

to be closely related to the above algorithm.

Fiat et al. [142] first showed a randomized algorithm, so called expand-contract, 

whose the competitiveness is bounded by an O (klogk) exponential function in a metric 

space. This algorithm is defined recursively in terms of /-server problem for I < k, whose 

base case is simply the greedy /-server problem. Later on, they used an interesting 

technique [14i,142], which is essentially a MIN generator over on-line server algorithms, 

to prove the upper bound on the competitiveness of expand-contract algorithm.

Next, Raghavan and Snir [285]1 presented a very simple and practical algorithm 

harmonic for k-servers in any metric space., while Grove [163] proved that the

competitiveness of this algorithm is ( —k-2k-2k) e  0(k-2lr). This result is the best
4

competitive bound of any algorithm for k-server problem in a general space by the present 

time. It is also conjectured that the correct competitive ration of the harmonic algorithm 

0 (2k) (e.g., see [56,285]).

Finally, Coppersmith et al. [98,99] obtained a randomized k-competitive algorithm 

for the k-server problem in finite resistive spaces. It is interesting for us to extend their

1 See paragraph 4.2.2 as well.
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results and show that randomized k'P 'iO-com petitive algorithms exist against the 

adaptive on-line adversaries on finite non-resistive spaces.

The following two tables summarize all the competitive upper bounds of on-line 

algorithms for special cases of the k-server problem known in the present literature.

Competitive Upper Bounds for k-Server Problem 
_______ Deterministic On-line Algorithms _____

Competitive ratio Special Case Sources
2 k = 2 f82.84,l 01.2551
k k = n-1 [254,2551
k Points on a line [88,2851
4k2 Points on discrete circle1 [39,2851
12k3 + 4k2 -i4 € Otk3) Points on a (continuous) circle' [1391
k Weighted Cache [88,2541
k Points on a tree [86]

Table 4.1: Deterministic On-line Algorithms for k-Server Problem

Randomized On-line Algorithms
Competitive ratio Special Case Sources

31700 k = 3 r< i

3 k = 2 [82,84,1911

k Resistive graphs 98,99,285]

k-'P'(C) 3 Non-resistive graphs [This paperj

2k Points on a discrete circle4 [98,285]

l(k io g k ) Any metric space [142,347]

k ( — -2k-2) € 0 (k 2k) 
4

Any metric space [1631

Table 4.2: Randomized On-line Algorithms for k-Server Problem

1 A discrete circle is a meinc space that consists of a finite  subset of the circle points.
2 On the contrary, die (continuousI circle consists of an infinite set of points.
’ r < c )  is the edge offset ratio, while die on-line algorithm is memaryless against a lazy adversary. 
* In this case, die algorithm is against an adaptive on-line adversary
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Theorem 4.2. There exists a unique1 randomized c-competitive on-line algorithm against 

any adversary fo r  any 2-server problem with c<*2. Furthermore, i f  the adversary is lazy, 

then the equality holds (i.e., c -  2).

Proof: First, we compute the transition probabilities for any random walk of a 3-node 

graph (i.e., without loss of generality for a n-node graph). These probabilities are unique. 

We conclude that the expansion factor of the determined random walk against a lazy 

adversary is 2. Note that on the larger cycle of the n-node graph, the expansion factor is 

always bounded by 2 (i.e., also by Corollary 4.1: a generalization).

Let P be a 3 x  3 matrix of transition probabilities and let H  be a 3 x  3 matrix of 

hitting times. Assuming edge weight symmetry, elementary probability theory yields the 

following three 2 x  2 linear system of the commute times

(H,, + H,,) = 2 - (d j j+  d,i) = 4 d,j for 1 < i , j  < 3 and i * j ,  

which have a unique non-negative solution in terms of the transition probabilities.

In addition, we find the following equations of hitting times circles on the 3 nodes: 

(H|2 t" H23 + H31) = 2 (d|2 + d23+ di3)

(Hn + H32 + H21) = 2-(di 3 + d23 + di2)

Clearly, if the adversary is lazy, the expansion factor over all cycles, not just 2-cycles (or 

commutes) or 3-cycles, is exactly 2. This occurs, because the hitting time from i to j  is 

composed of 2 parts and equals 2 d;, (i.e., exactly what we want!).

Next, we show that the random walk has an expansion factor of 2 even if the 

adversary is non-lazy. Let us denote S,(j) as the set of all adversary algorithms where the 

adversary makes no more than i moves, at most j  of which are non-lazy moves. We can 

easily see that for each /  g  S,(j), there exists an /  g  Si(j-1) such that the adversary can 

always replace an t'th non-lazy move with a lazy move without decreasing the expansion 

factor of its sequence. Thus, we can replace the strategy from S,(j) with a strategy from 

Sj(j-1) without loss to the adversary.

1 The uniqueness is in terms of an only one probability matrix.
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Given a network R =  (r,j) of resistors (a network C  =  (C tJ) of conductances where

edge weight Cy = — ), we can define the probability matrix for the random walk by Pm = 
rv

Cjj/ C, where Ci = ^ G  and 1 < i , j  < n.
j

Let R,j denote the effective resistance between vertices i and j (i.e., a unit voltage 

between i and j  in this network of resistors results in an electric current of — ). We

require that the support graph to be connected so that the effective resistances will be 

finite.

Definition 4.1. A cost matrix C =  (C ,j) is resistive if it is the matrix of effective 

resistances obtained from a connected non-negative symmetric real matrix (G;j) of 

conductances. The matrix ( G tJ) is the resistiv" inverse of C .

Definition 4.2. A stochastic cost matrix P = (P(J) is ergodic if any state can be reached 

from any other state; we call the corresponding random walk an ergodic walk. Then a 

non-negative real cost matrix P is reversible if for all i , j ,  we have W, -P(J =WJ PJi = C,j / A 

(i.e., symmetry of the edge weights), where W, is the stationary probability of being in the 

ith state (node) and A = ^ G .
'J

Conversely, given a Markov chain defined by a reversible ergodic probability 

matrix P, we can get the corresponding electrical network by taking G , = Wj-Pg.

Chandra et al. [71 ] extended the above work to arrive at new bounds for commute 

and cover times for random walks. They used the harmonic probability distribution, which 

was defined by Doyle and Snell [121], to get a system of linear equations of the hitting 

times Hg (i.e., the expected length of a walk that starts at node i and ends on the first
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reaching node j). These linear systems have unique solutions and turn out to be identical 

if we identify the voltages with hitting times H,r

Using the same argument twice we can easily get the following equation:

H.j + Hji = 2m-Rg = AR„ (4.1), 

where Hjj + Hj, is the commute time, m the number of edges and R, is the effective 

resistance between nodes i and j .  This result establishes the close relation between 

commute times for the simple random walk on G and effective resistances in the electrical 

network R.

If we think of edge weights d.j (i.e., the distance between nodes i and j)  as vectors, 

then the harmonic random walk as defined in [71] has transition probabilities Pg =

^  by making use of the notion of the expansion factor or stretch1 Hjj / djj of the
2*1 td*
j* ‘

random walk from / to j.  Clearly, if we use the commute time of 2m Rjj as an upper bound 

on the hitting times H.j, we conclude that the harmonic random walk has an expansion 

factor of at least 2m.

Let P denote the transition probability matrix of size n x n of an ergodic markov 

chain with stationary distribution W. Let = 0 2 for all i, and let H = (H(J) denote the 

expected first-passage-matrix of hitting times for the above chain.

Lemma 4 .1.3 Pj>Hv = n -  1, fo r 1 <i, j  <n.

1 Similarly, we can define the stretch of a random walk over a path or a cycle.
1 This condition is not needed in the case of non-resistive spaces.
5 This lemma also holds for non-resistive spaces.
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X ^  ( X  p ‘ Hv) = Y W j  ( H j j  -  1) = X w  ( - i - -  1) = n - 1. since
Wo

/?!Foster's Theorem [99] suggests that X “  = n - 1, where i*->j denotes that the
.«, r,

nodes are connected by a finite r,j. We can very easily show, using the formula (4.1) and

Ri
because P is reversible, that X ^  p>x = ^ us’ Lemma 4.1, implies Foster’s

, . j  i < j  r "

Theorem.

Given P as above, we define P to be the following (n-1) x (n-1) matrix. Let P, =
n________________ __

W, ( = X  W' P-i ), and P} = - W, P(J for 1 < /', j  < n-1. Further, let Ha = Hj„ + Hnj, and

H* = H,„ + H„k - Hjk, for 1 < j , k <  n-1. We then claim the following generalization of the 

resistive inverse identity which is well known in electrical network theory (e.g., see in 

171,121]).

Lemma 4.2. P H  -  I„.i, where I„-i is the identity matrix o f size (n - I) x (n  - 1).

Proof: By elementary theory o f linear algebra and using the triangle inequality for hitting 

times (see [143] for more details).

4.2.2 The Harmonic Algorithm for the k-Server Problem

We have seen that the simple greedy algorithm, which always chooses the closest 

server, is easily failed by an adversary because of its predictability, and fails to achieve a 

bounded competitive ratio. On the other hand, an efficient competitive on-line algorithm

Chapter 4

P roof : X  Wj Pi- H  ̂ =
‘■j

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 76

for the k-server problem should be obtained if we choose our servers to be close to the 

request points.

Raghavan and Snir [285] presented a very natural, memoryless1 algorithm, called 

Harmonic algorithm, which is defined as follows:

Algorithm Harmonic

Let di, d2 dk be the distance of each server from the current request. Send server i with

1 * 1
probability (—) / ( £ —), which is inversely proportional to that server’s distance from the 

d, dl

request point.

Figure 4.4: Harmonic Algorithm for k-Server Problem

Raghavan and Snir also showed that harmonic algorithm is 2-competitive and (n- 

l)2-competitive against a non-adaptive adversary when k = 2 and k = n-1, respectively. 

They did not see the usefulness of the analysis of the relationship between random walks 

and server problems (or expansion factors and competitive factors) as being restricted to

k-node graphs. They showed that harmonic algorithm is 2-^ j-competitive against a lazy

adversary in any metric space with k points. A lazy adversary is relatively simple and it is 

restricted to requesting a point that is occupied by an off-line server but not by an on-line 

server if such a point exists. It can easily be proven that the competitiveness of the

harmonic algorithm is ^ j , because the competitiveness of the server algorithm is clearly 

bounded above by the largest expansion factor of all phases.

1 As the name suggests, tl algorithm does not maintain any state information.
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Furthermore, Raghavan and Snir conjectured the following:

Lazy Adversary Conjecture (LAC): The following (strong) adversary 
strategy results in the poorest performance fo r  memoryless algorithms: 
Whenever there is a point in the space at which the adversary has a server 
but we have none, the adversary presents a request at that point (instead o f  
making a move and incurring a cost).

They also claimed (see [285], pp. 701, Theorem 18: its proof is omitted!) that even 

without LAC they could bound the competitive performance of the harmonic on-line 

algorithm in an arbitrary metric space for the 2-server problem in the interval [3,6].

Manasse et al. [254,255] gave a deterministic 2-competitive on-line algorithm for 

the 2-server problem against any adversary and therefore the above claim is wrong even in 

the randomized case.

Theorem 4.1. The strong competitiveness ratio o f the harmonic algorithm fo r the 2- 

server problem is in the interval (1,3] (not in the interval range [3,6]).

Proof: Clearly, the harmonic algorithm against a lazy adversary has a competitive ratio (or 

an expansion factor) bounded above by 3 (also, by Lemma 4.1). As we have seen, a game 

against a lazy adversary always proceeds in a series of phases. Assuming that a phase 

starts with k = 2 servers and those of the adversary overlapping on node 2. The adversary 

requests node 1 and moves there with his server from node 3. Thus, the server pays the

C O St d 3 | .

We proceed using the harmonic algorithm against the lazy adversary, until finally 

we answer a request with the server from node 3, and those of two servers overlapping on 

nodes 2 and 1, then end this phase. The amount that has been paid is the expected cost 

H13 of a random walk from 1 to 3.
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We get the following 2 x 2  system of equations:

{

H u  =  Pi3‘d i 3 +  Pi2‘(d l2 +  H 23) 

H 23 =  P23'd23+ P21‘(d21 +  H u )

By solving the above system of equations and using the symmetry of the transition 

probabilities p,j (where ’ <, i, j  < 3) which are given by the harmonic algorithm, we have 

that

u  2dn (2d21 + dn)
Hu — — —  .

d 12 + d 13 + di 3

The above formula can be rewritten as

,dl l+dl l  + dll d a  —du
H 13 =  2 d 3r ( -----------------------  +   --------------------- ).

dn  + d n + d n  d i i+dn+d i i

Thus, the expansion factor for the random walk and hence the competitiveness of the

algorithm is

H u / d u  =  2 (1 +  d -  ~  d- x ).
dn  + dn  + dn

Using the triangle inequality, we get that

and

2 • (2d 21 dn)  , 
lim ---------------------= 1

d a —*0  d l l  +  £/l3 +  d l l

2 ( 2 d n  + ^ 31) ,,
lim ----------------------   3.

d H-+0 dn  + dn  + dn  

Therefore, the lazy adversary always forces the competitive factor to be in the interval 

(1,31. □

Now, the question arises whether there exists a randomized 2-competitive on-line 

algorithm for the 2-server problem.
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We repeat the process one-by-one, until all the non-lazy moves have been 

eliminated. Since the algorithm we consider is 2-competitive against a lazy adversary, it 

has to be 2-competitive against any adversary as well. □

4.2.3 Resistive Spaces in the k-Server Problem
Recently, Coppersmith et al. [98,99] very cleverly used Raghavan and Snir's 

interesting technique [285] to treat the edge weights in the graph where our servers are 

moving as effective resistances in some electrical network, and calculate the transition 

probability using the harmonic algorithm in this “inverse" electrical network. The designed 

reversible random walks are useful for certain randomized competitive on-line algorithms.

Coppersmith et al. deigned randomized k-competitive algorithms against any 

adaptive adversary on resistive spaces with resistive inverses. Resistive spaces include 

every metric space for which a k-competitive algorithm has been proven and many more 

resistive graphs as well. For example, some of these graphs include:

•  3 node graphs satisfying the triangle inequality [56],

•  distances on a line [285],

•  tree closure [71],

•  uniform graphs [99,142,254,255].

Note that the Euclidean plane has no resistive approximation (see [99], pp. 442) 

and that no Hk-competitive algorithm exists for the k-server problem when the metric 

space is non-uniform (e.g., it can be shown by establishing lower and upper bounds on the 

competitive ratio for the 2-server problem on certain triangles; see [203] for more details).

Coppersmith et al. also showed how to compute a value for each pair of points in 

a resistive space such that on a request to a node \), if there is no server on node u, then
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the server sitting on node Vi services the request with probability proportional to the value 

of the edge (Ui, u). This algorithm is simple and memoryless.

The same authors proved the following tight bound for all symmetric cost 

matrices:

Any random walk on an weighted (undirected) graph with n-vertices has 

stretch factor (or simply stretch) at least n-1, and every weighted (undirected) 

graph has a random walk with stretch at most n-1.

They also justified the above results for the cat and mouse game [99], metrical task 

systems [66] and k-server problem [255]. Additionally, they derive algorithms for some 

non-resistive [98] spaces by approximating the original metric space by a resistive metric 

space. The approximation technique yields a randomized 2*-competitive algorithm for 

points on the periphery of a circle (i.e., a discrete circle). This is the first on-line algorithm 

for the k-server problem on a metric space.

4.2.4 Asymmetric 2-Server Problem

Symmetry of the edge weight of an electrical network is very crucial to the basic 

technique used in designing the appropriate random walk. All the work previously done 

on the k-server problem dealt with resistive graphs, where symmetry of the edge weights 

(costs) could be assumed.

The following question arises: Can we design competitive on-line algorithms fo r  

the k-server problem on non-resistive graphs (i.e., no symmetry of the edge weights)? 

The answer seems to be that we can no longer find algorithms with a competitive ratio in 

terms of the number of servers alone.

In the symmetric case, we have seen that the»e exists a randomized competitive, 

memoryless algorithm for any 2-server problem against any adversary (Theorem 4,2) and
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we found a competitive ratio of exactly 2 against a lazy adversary. In the non-symmetric 

case, if we adopt the same strategy, we cannot achieve an expansion factor of exactly 2 

against a lazy adversary for large cycles.

Definition 4.2. Let C = (Cy) be the given cost matrix of size n x n. The cycle offset 

ratio 'F(C) is defined as the maximum over all cycles CoiAh \>k = Vi) of the ratio

k - 1
y  r
*  Mi, V i* i  

j * i__________
k • 1y c
** Ui ♦ i. I*

i = 1

If we assume the edge costs satisfy the triangle inequality, then 1 ^ H'(C) 5 (n - 1). 

Moreover, we have that M'(C) = 1, when C is symmetric.

Theorem 4.3. There exists a randomized, memoryless, 2'¥(C)-competitive algorithm for  

the asymmetric 2-server problem against a lazy adversary.

Proof (sketch): It is similar to the proof of Theorem 4.2 for the symmetric case against a 

lazy adversary. We find that there are exactly two sets of probabilities (hence, two 

solutions) yielding an expansion factor of 2 for all commute times against a lazy f.dversary 

on a 3-node graph.

On larger n-cycles (n > 3), the competitive factor is greater than 2 and it is 

bounded above by two times the cycle offset ratio of the n-node graph, which can be as 

high as n-1. Since the number of vertices is doubled (in the worst case), our algorithm can 

be at most 2-n-l rather than 2 (n-1). □

It is not our intention to give the completed proof here, because it is straight 

forward and similar to that of the symmetric case by substituting the hitting times Hy of 

the old symmetric analysis with the expected “closing distances” Dy.
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We observe that asymmetry of that edge weight on graphs gives us randomized 

on-line algorithms of higher competitiveness (i.e., upper bounds) for 2-server problem.

4.2.5 Non-resistive Graphs and Server Problem

Coppersmith et al. [98] have given an approach for resistive graphs that can be 

extended for non-resistive graphs.

We use ergodic random walks (see definitions 3.1) with the advantage that 

reversibility of the walk (i.e., symmetry of the edge weights) is not needed to design 

randomized competitive on-line algorithms for some previous well known problems (i.e., 

task systems and cat-mouse gam e).

D efin itio n  4 X  An M-matrix is simply an n x  n matrix A of the form A = a-In - P in which 

P is a non-negative matrix and a  is at least as big as the largest eigenvalue of P.

Clearly, the matrix P defined in section 4.2 is an M-matrix. The following 

Theorem o f Fiedler etal. [143] is an interesting trace-inequal; ?y.

Theorem 4.4. For a non-singular M-matrix A o f  size n x n, we have that tr(A~lA T) < n, 

with equality holding i f  and only i f  A is symmetric.

Now let us state a stronger result which generalizes Lemma 4.1.

n

Corollary 4.1. ^  W PXJ H,t s  n-1, fo r any ergodic graph, w ith equality holding if  and
i .j * i

only i f  the graph is resistive (i.e., lemma 4.1).

Proof: Using Theorem 4.4 with P in the place of A, we have
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tr( H Pr) = £  '  AP^H.j < n-1. 1
, . , = 1

Now we are ready to show all the result of Coppersmith et al. [99] for k-server 

problems on resistive graphs can easily be extended in the case of non-resistive spaces. 

We do not intend to state and prove all the results here, because most of them, including 

their proofs, are identical to those in [99]. We clearly justify this claim by arguing that the 

designed reversible markov chains are the same as that of resistive graph., if w i use the 

new technique on non-resistive spaces.

Theorem 4.5. Any random ergodic walk over a directed weighted graph has competitive 

factor at least (n-1) / X¥(C), where C -  (C„) is a n n x n  cost matrix.

Proof: Indeed, the proof is identical to that of Theorem i of [99], wherein the symmetry' 

is assumed. I

Theorem 4.6. For any n x  n cost matrix C and any transition probability matrix P, the 

stretch o f the ergodic walk by P on a non-resistive graph with weights given by C is at 

least n-1.

Proof: It suffices to bound the competitive factor over all cycles. This can be extended to 

ail paths, with an additive constant such as max C,,. The expected cost per move is
■•J

E = £  W . P . C , , ^  W, P.j H,, < n-1
t . J  i . /

by Corollary 4.1.

Now, the expected cost of a sequence of walks (or a walk) through vertices 

Ut.\>2 Uk = \)i is simply
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k k k

E Vi'D. + 1 < (n-1) £ c

Note that the lower bound is n-1 under symmetry, since H'(C) = 1. The proof of the lower 

bound is essentially the proof of Theorem I of [99].

The following theorem about the cat and mouse game is an immediate 

consequence of Theorem 4 of [99]:

Theorem 4.7. Let G be any weighted ergodic graph with n nodes. There exists a 

randomized strategy with a competitive ratio o f  at least in-1) /  'ViC) for the cat-mouse 

game on G, and the ergodic walk by the cat achieves a stretch factor {ratio) o f  at least 

(n-I).

and when C is symmetric ^ (C ) = ^ '(C )  = 1.

An interesting theorem for the k-server problem on ergodic non-resistive graphs 

follows:

Theorem 4.8. Let C be a non-resistive cost matrix on n nodes. I f  every submatrix on 

(k+lhnodes is ergodic, then there exists a randomized k'¥'(C)-competitive strategy fo r  

the k-server problem against an adaptive on-line adversary.

Proof: It is similar to the proof of Theorem 8 of [99] in the case of resistive graphs. D

Lemma 4.3. Any random ergodic walk on a graph with self-loops has stretch o f  at least 

2n-l, where the costs C„ are not necessarily zero.

Q
Definition 4,3. Let the edge offset ratio 'P 'fC) be max — . Note that ¥ ( 0  £ ¥ ' ( 0 ,

•>  C j i
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The proof is omitted, because it is similar to that of Theorem 7 of [99).

Additionally, Theorem 4.3 can easily be generalized as follows:

Theorem 4.9. There exists a randomized, memoryless k yY t(C)-competitive algorithm for  

the k-server algorithm against a lazy adversary on non-resistive spaces. Moreover, there 

exists 2k-competitive algorithm (called the k-center algorithm) which is optimal up to a 

factor o f 2 among all on-line algorithms for the k-server problem on a bounded non- 

resistive space.

The first part of the above theorem is straight forward to prove from the proof of 

Theorem 4.3 for the non-resistive spaces in this case. For the second part, we can extend 

the proof of Theorem 5.1 [350] for the k-server problem on any bounded non-resistive 

space.

An interesting and immediate consequence is the lower bound of (2n-l) / ^ (C ) fi'r 

any deterministic or randomized on-line algorithm for task systems on non-resistive n- 

node graphs. Although the proof is straight forward and similar to that on resistive 

graphs, it seems to be considerably simpler when we use ideas from the proof of Theorem 

4.7. Specifically, for the deterministic (resp., randomized) case the proof is essentially that 

of Theorem 2.2 of [98] (resp.. Theorem 11 of [99]).

We have seen that the Coppersmith et al. approach [99] works for non-resistive 

graphs and it can be used to find competitive solutions of the k-server problems against a 

lazy adversary. However, the following open question arises: Can a general metric space 

be always changed slightly, in a predictable and useful fashion, so that it becomes non- 

resistive?
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We have no results for the k-server problem in general metric spaces. It would be 

interesting to study the cat and mouse game under a wider class of strategies in the case 

when the cat is not blind; this would extend the interesting work of Baeza-Yates et al. 

[35]. It is believed that a somewhat different random graph approach will solve the k- 

server conjecture (where k > 3) for general metric spaces in a randomized environment as 

well. Finally, we would like to point out that there are several challenging open problems 

for k-server problem (e.g., see [98,99]).

4 J  The Distributed k-Server Problem
In the previous sections we have seen the standard setting of the k-server problem 

where the communication cost was free, that is, there was a centralized (global control) 

algorithm that got the requests for service with no cost and transferred the motions 

instructions to the servers.

A more realistic distributed ( local control ) setting of the k-;«.. .er problem is that 

when the information messages to the servers are costly. The problem arises in computer 

network of n processors when k identical mobile servers have to be scheduled between the 

processors of the network. The objective is to develop on-line algorithms that optimize 

not only the total distance the servers travel but also the communication cost incurred for 

the transmission of control incomplete information about the requests. This problem is 

also related to distributed file allocation problem and to other problems of data 

management [26,28,29].

In some special cases (e.g., for the uniform metric spaces) deriving distributed 

algorithms from the standard ones is straight forward by choosing a leader that runs the 

global-control algorithms and ignores requests on covered points. Generally, the 

transmission of any deterministic competitive global-control k-server strategy for any 

metric space into a competitive distributed algorithm is too expensive.
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Bartal and Rosen [421 have developed a general translator to make k-server 

algorithms distributed and designed poly(k)-competitive distributed algorithms for the 

lines, trees and the rings. They also proposed a distributed k-server algorithm which

achieves a competitive ratio of Q(mwc[k, ~j)' fo^iogn ^  a£a*nsl adaptive adversaries for

arbitrary network topologies with n nodes, where D is the ratio between the cost of 

moving a server and of transmitting a message across the same distance. The same authors 

considered a distributed version of the randomized harmonic k-server algorithm, which

has the best currently proved competitive ratio of 0(C h(1 + ~  max{k, p}-

(logA)-logn)), where Ch is the competitive ratio of the classical harmonic algorithm , A 

denotes the diameter of the network topology and ji = max{[ logri], [ iogA]} which 

indicates the size of a unit-length message. Here, it would be interesting to mention that 

most of the results for the k-server problems on resistive and non-resistive graphs can 

easily be transformed into the distributed environment.

The larger the island o f  knowledge, 

the longer the shoreline o f  wonder.

R. W. Scockman
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Combinatorial On-line Algorithms
Heuristic has concerned, with language-dvnamics. 

while logic has concerned with language-static.

Imre Lakatos

The aim o f  heuristics, o r heuretics. or “ars inveniendi” is to 

study the methods and rules o f  discovery and invention.

George Polya

There is tremendous amount of literature on off-line optimization problems and 

algorithms. This chapter deals exclusively with the combinatorial problems in on-line 

manner. Particularly, we study the on-line graph coloring and matching problems as well 

as their algorithms. Moreover, we give a very brief presentation of on-line string matching 

and on-line flow  problem  in a network.

5 .1  On-line Graph Coloring

5.1.1 Problem Statement and Related Terminology

The problem o f  coloring a graph is that of assigning a color to vertices such that 

no two adjacent nodes (bins) receive the same color. A valid coloring of a graph 

G = (V, E) is a partitioning of the nodes into color classes such that the vertices of the
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same color are non-adjaceot. Let \ (C )  be the chromatic num ber  of a g m h  G; that is, the 

minimum number of colors used in any valid coloring of G.

A graph (off-line) coloring algorithm receives an input graph G and determines a 

valid assignment of colors to nodes. It is well known that the problem of finding a valid 

coloring graph which uses the minimum number of colors is NP-hard [156].

We proceed with some definitions and notations which will be used in the section. 

An on-line graph is a structure G^ = (V, E, -<), which is also called an on-line 

presentation of a graph, where V is finite or countable infinite, and -< is a linear ordering 

of V. Let V, = {Oi \>,} denote the first i vertices of V in the linear order -< and the set

G ^=  (V„ E„ -<), where E, is the set of edges in V„ for 1 < i < n = IVI.

An algorithm for coloring the vertices of an on-line G^ is said to be on-line graph 

if the color of a vertex o, is determined solely by G"̂ . Intuitively, in the on-line version of

the graph coloring problem, the graph is presented one vertex at a time when a vertex is 

presented and only the adjacent edges to all already presented vertices are also revealed. 

An on-line algorithm has to irrevocably assign a color to a vertex before proceeding to the 

next vertex. The goal of on-line algorithm is to minimize the number of colors used in 

coloring of the graph.

A simple but important example of an on-line graph coloring algorithm is the First- 

Fit (FF) algorithm.
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Algorithm FF(G)

Assign to each o, of G with the lowest possible color which is 

not already numbered to any vertex \) e  V j_, adjacent to \),.

Figure 5.1: On-line Graph Coloring Algorithm FF(G).

We use competitive analysis to measure an on-line coloring algorithm A .  Let 

X.(G) denote the chromatic number that A  uses to color G. The performance (or 

competitive) ratio of an on-line graph coloring algorithm A ,  denoted by p^(G), is defined 

y (G)
as p^(G) = max—  , where G is ranging over all input graphs for a class of graphs C.

On-line graph coloring has applications to parallel process assignment and 

register (storage) allocation problems [69,170,278]. Recently, Lovasz et al. used the 

upper bounds of on-line coloring algorithms to examine the relative power of determinism, 

randomization and non-determinism to search problems in the Boolean decision tree 

mode! [248,188].

In the next subsection we consider on-line coloring on some restricted classes of

graphs.

5.1 .2  On-line Interval Graph Coloring

We consider the interval coloring problem  as an introductory example of on-line 

graph coloring.

A graph G is said to be an interval graph if it is the intersection graph of a family 

of intervals along the real line; for example.
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Figure 5.2: i) Interval representation ii) Interval graph.

In on-line setting of the problem, each request is an interval on the real line and 

each action assigns a color to the current request, with no two overlapping intervals 

receiving the same color. The cost of a request sequence is the number of colors used. Set

w(G) = maxH'(I) the clique number of the interval graph G; that is, the maximum width
1*0

assigned to any interval ranging over all input intervals of G.

Kierstead and Trotter 1217] give an on-line algorithm for the interval graph, which 

is a modified FF(G) coloring algorithm.

Algorithm On-lineColor (G, w) 
begin

As each interval l€ G arrives it is assigned a positive integer 
w(I) called the width of interval I and a color;
If I does not intersect any previous interval of width 1. then 

w(I) := 1;
Assign any color to I, among those received for its width, 
that has not been assigned to any previous interval that 
intersects I; 

else
w(I) := the set of the least j > 1 such that I does not 
intersect more than two previous intervals of width j;

Assign three colors for each interval of width j; 
endif 

end.
Figure 53: On-line Interval Coloring.
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Kierstead and Trotter [217] showed that the above on-line algorithm colors any

on-line interval graph with at most 3-w(G^) - 2 colors. Arguing by induction on w,

one shows that G ^can be partitioned on-line (just be greedy) into a maximal graph

G*"* with clique size w - 1 and an induced subgraph IT* of G~* with maximum degree 2. 

Thus, G can be colored on-line using 3 (w - 1) - 2 + 3 colors. Moreover, it can be shown 

by means of an adversary argument that no on-line algorithm can do better. Therefore, 

Kierstead-Trotters on-line coloring algorithm achieves an optimal performance ratio of 3 

on interval graphs.

Finally, we would like to point out that the interval coloring problem can be seen 

as a scheduling one, in which each interval represents the time span of some task and the 

color represents the processor assigned to execute the task.

5.1J  On-line Coloring on Special Graphs

The on-line coloring has been extensively studied for special graph classes. The 

bipartite graphs can be colored on-line using O(log n) colors [248]. The previous best 

lower bounds known were £l(log n) for n-node trees (since trees are also chordal graphs) 

and 0(logk n) for k-colorable graphs, where k is fixed [248],

Kierstead [214] has proved that FF algorithm has a constant performance ratio on 

interval graphs. Gyarfas and Lehel [164,165] have also shown that FF achieves a 

constant performance ratio on split graphs, complements o f  bipartite graphs, and 

complements o f  chordal graphs.

Recently, Irani [188] examined on-line coloring for the inductive graphs. A graph 

G is d-inductive if its vertices can be ordered (called an inductive order) in not necessarily 

such a unique way that each vertex is adjacent to at most d higher-numbered vertices. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter S Combinatorial On-line Algorithms 94

inductive order of G gives an inductive orientation for the edges of the inductive graphs 

from the higher numbered vertices to the lower numbered ones.

Irani [188] (also Karloff, independently) showed th^* FF on-line algorithm uses 

0 (d  log n) colors to color a d-inductive graph G with n = n(G) vertices. This yields that 

any on-line coloring algorithm for d-inductive graphs has a performance ratio of Clilog n). 

The upper bound on the chromatic number of colors used yields an upper bound on the 

performance ratio for graphs, where d and the chromatic number x are closely related. For 

example, planar graphs are 5-inductive and chordal graphs are x(G)-inductive, which 

implies that both of them have a performance ratio of Odog  n).

When the on-line model is slightly altered by allowing the algorithm to see the next 

l>  1 vertices before assigning a color to the present vertex, we say that the on-line 

coloring algorithm has a weak lookahead o f size I.

Irani [188] showed that even with a weak lookahead of size —- — , an on-line
logn

algorithm still requires Q(d- log n) colors to color a d-inductive graph. For a weak

lookahead of size I > ——  we can do better, because we can on-line color a d-inductive
logn

graph in 0(min{d-logn, ^ -p}) colors.

We now use the new on-line model of strong lookahaead, which has practical and 

theoretical importance. An on-line coloring algorithm has a strong lookahead o f  size I if it 

has a weak lookahead of size I and at step t + / at least t requests have been answered, 

where t is an integer > I. This on-line model is also called on-line with a buffer o f  size I
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and it is more powerful (as an algorithmic feature) than the weak lookahead model 

improving slightly Irani's bounds.

Theorem 5.1. I f  G is a d-inductive graph on n nodes, then G can be colored on-line with

d  * ftstrong lookahead o f  size I using 0(min{r/ • logn, — -}) colors fo r  1 £ l £ t - l  and t > 2  an 

positive integer.

Proof: The proof is similar to that of Theorem 8 in [188).

If d- logn < (d + 1)— this ignore the strong lookahead and use FF algorithm 

to color a d-inductive graph. By Theorem 6 [188], FF uses 0 (d  tog n) colors.

If J  log n > ( d  + 1)—— , then divide the nodes into — consecutive nodes of 
6 t - l  t - l

the inductively oriented graph. The algorithm can see the d-inductive subgraph induced by

the nodes in each group before having assign a color to the first node in the group.

Therefore, a d-inductive graph can be colored using at most d + 1 colors for every group.

Totally, at most (d + l )——  colors are used. The above bound is asymptotically the best
t - l

possible and it can be shown with a similar way as in the Theorem 9 of [ 188 ]. □

We have seen that FF coloring algorithm does well on some special graph classes, 

but it does quite poorly in general. Again, we conclude that the point at which (weak or 

strong) lookahead becomes an advantage is quite high for on-line coloring as we have 

already seen for paging problem.
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5.1.4 On-line Coloring on Hypergraphs
A hypergraph H  is a collection of edge subsets E |, E2 ,..., E, of a set of vertices 

V = { l , . . . , n } . A  k-hypergraph is a hypergraph where each edge set E, contains exactly k 

vertices.

Let m(k) be the largest 5 such that each &-hypergraph with s edges can be 

2-colored. Erdos [352] has shown that

2k*1 < m(k) < k2-2k+1

These bounds are not constructable (i.e., algorithmic) and show that all k-hypergraphs 

with fewer than 2k'* edges are 2-colorable, but if the number of edges is greater than 

k2-2k+l, then there exists a k-hypergraph which has no proper 2-coloring.

Unfortunately, the general problem of 2-coloring hypergraphs is reducible to set 

splitting problem  and thus, it is an NP-complete [156]. We instead find 2-coloring of 

hypergraphs restricted by size and degree.

We consider the problem of on-line coloring for k-hypergraphs. Let f(k) be the 

largest s such that all k-hypergraphs with s edges can be 2-colored in on-line setting. 

Aslam and Dhagat [14] have shown that an on-line coloring adversarial strategy exists, it 

is so called two chip game, which achieves the following bounds

2‘-' < / ( * ) <  *(3 + 2V2) =

i+Vs
where 9  is the golden ratio — - — .

In this case, the upper bound demonstrates an inherent weakness of on-line 

algorithms against any adaptive adversary. They stated an interesting open problem :
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construct an on-line strategy to achieve a better upper bound for 2-coloring any k- 

hypergraph with respect to two chip adversarial game or any other strategy.

This problem can be easily solved using a simple modification of the randomized 

adversarial algorithm [1*9]. Therefore, there exists an on-line adversarial algorithm for 

any on-line 2-coloring algorithm A  and every s > k2- 2*+/, produces a k-hypergraph with s

edges which a  fails to 2-color. This algorithm runs on-line in Q( ; — s ) time
(logn)

complexity and is 0 ( 1)- competitive against any adaptive on-line adversary.

5.1.5 On-line Coloring on General Graphs
There has been a let of work on on-line graph coloring. For example, Lovdsz et 

al. [248] give an on-line coloring algorithm for general graphs that achieves a

performance ratio of 0 (n/ log*n)1, which slightly improves the worst possible performance 

ratio o f o(n), where n is the number of vertices.

Hallddrsson and Szegedy [169] show that for every deterministic on-line coloring 

algorithm there is a k-colorable graph with k-2k'1 vertices on which the algorithm uses 2k-l

colors. This implies a f2( — - —; ) lower bound for the performance ratio of any on-line
(logn)

algorithm on general graphs. In the randomized case, they show that the above results 

hold within a factor of k. This randomized on-line coloring yields a lower bound of

Q( — - —r ) performance ratio. Additionally, they show two optimal lower bounds on the 
(logn)3

0( ~ )  approximation of both deterministic and randomized on-line coloring with 

lookahead of size / = Q(/og3n).

1 We remind that log*n = min[i; log(,)n S 2), where log(,)n = log(log0 l’n) for each i e Z*.
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Definition 5.1. A maximat partial greed s-coloring of a graph G is the assignment of the 

nodes into a fixed number of greedily color G with s colors, leaving out vertices that 

cannot be colored. The set R of the uncolored vertices is called the residual set, while the 

set of vertices that have been assigned the same color by a maximal greed 5-coloring is 

defined as a greedy color class.

Maximal partial coloring can be achieved sequentially by a natural heuristic: find a 

node of maximum degree, recursively color its neighborhood, and iterate this procedure 

on the remaining graph. This is essentially the method of Wigderson [342] and can easily 

be found via the FF algorithm which assigns a vertex to the first compatible color class (if 

one exists).

In order to describe the algorithm let the greedy color classes be Cj, C i ,C*.

Consider a color class C, and denote the vertices in this color class to be \)i Vi, where

\)i -< -< Mi. We associate the first vertex in C, to which it is adjacent with every

vertex in R. This partitions R into Bi Bt blocks. We define a function S(n,%) =

min{[2xn(x'2*x' l) (/ogn)lAx l’l, n} that determines the number of color classes that we use.

Now, we describe Vishwanathan s algorithm:

Algorithm Online-Color 1(n,x) 
begin

if (x ^  2), then BipartiteColor(G)
{* Algorithm BipartiteColor{Q) uses at most 4 logn colors [248] *)

else
Set s S(n, X)'.
Chose a random integer r uniformly from {1,.... 5]; 
while (there are no more vertices) do

if the number of vertices in the partition exceeds s, then 
get the next vertex x> in the partitioning class; 
if \) can be colored using the greedy set of colors {1,..., s],  then 

color the vertex greedily.
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else {* \> is in the residual set R *}
Determine which block B of the partition of the vertex falls into;
Input the vertex to the copy of Online-colorl corresponding to B\ 

endif
Online-Color 1 (s, y - 1); 

endif 
end {* while *} 

endif 
end.

Figure 5.4: Vishwanathan's Randomized On-line Coloring Algorithm.

Indeed, when k = 2 the problem is reduced to bipartite coloring which is fairly 

straightforward sequentially, in parallel, and in on-line fashion.

Theorem 5.2. The number o f  colors used by algorithm Online-Color I (n,x) on 

X-colorable graphs is at most s(n, y j (see [3371).

Proof: Let A(G, n, x) denote the number of colors the on-line algorithm uses in total to 

color a x*colorable graph G on n vertices. Thus, we want to show that A(G, n, x)

£s(n, x), where s(n, x) = ( x2* I n**'2**'0 (/o^n)1**'0 for X -  2, which can be r.oved by 

induction on x- □

Therefore, Vishwanatan’s algoritf. t has a performance ratio of 0 (n  / (log n)'7*) 

against an oblivious adversary. This result shows that randomization helps in on-line graph 

coloring.

Very recently, HalUidrsson [170] modified Wigderson's algorithm [342] or the 

deterministic Vishwanatan's off-line algorithm to improve the performance ratio to 

Ofn I logn).  The sequential (off-line) coloring algorithm finds a maximal partial coloring, 

partitions the remaining vertices around the smallest color class and recourses on the
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relatively few sub-problems. The recursion stops at bipartite graphs, otherwise if the 

chromatic number x of G is too large with respect to the size of the graph, we settle on 

the trivial coloring of one color per vertex. Thus, the pseudo-code of the algorithm 

follows:

Algorithm Offline-Color I (G, k); 
begin

a(n, k) := (n / (k - 2))(k * 2) / <k * l ) .
if (k < log n), then BipartiteColor(G}
else if (k > log n), then assign each vertex a different color ;

else
ResidueNodes := MaximalPartialColor (G. G (n, k));
Find the smallest greedy color class, and let w i wp be its nodes;
Partition the ResidueNodes into Ri , . .., Rp such that nodes in R; are 
adjacent to w ,; 

for i = 1 to p 
Offline-Color 1(R„ k -  1)\ 

endif 
end.

Figure 5.5* An Approximate Off-line Coloring Algorithm.

We can easily prove by induction on k and with a similar way as in Theorem 5.2 

that the number of colors used by the above Offline-Color7(G, k) algorithm on

k 1
k-colorable graphs is at most  rk ^ /o -n  ■n<fc~2W(t"1>. So, our algorithm achieves a

(k 2)

performance ratio of O(n0c - 2) / (k - 1)  ̂ whjch is maximized for k = logn. Therefore, 

algorithm Offline-ColorI(G, k) has a performance ratio of 0 (n  / log n).

Haldorsson [162] constructed the first parallel coloring algorithm  with the same 

non-trivial performance ratio of 0 (n / log n) and complexity time 0((log4n) log log n) 

using the above sequential 0off-line) coloring algorithm. He just substituted the sequential 

MaximalPartialColor (G, G(n, k)) with the following parallel one:
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Algorithm MaximalPartialColorl(G, x); 
begin

Construct the following graph G ' on (nx)  vertices (see (170]):
1 2

Make x identical copies of G  : G  , G   G x;

( l)  /  » V 1 ) € £ ( G lf t  ‘ = 0TJ ~ 1 and ^  €
I M I S ( G 1; {* Maximal Independent Set o fG '. *}

X

G i := 10  G 1; ResidueNodes := G  — ( J C j ;
■ «i

Rerum the greedy color classes {C,} and ResidueNodes; 
end.

Figure 5.6: A Parallel Maximal Partial Coloring Algorithm.

Next, we convert Offline-Co\otl algorithm into an on-line algorithm. The 

algorithm assigns a color only to the formal variable x> (a vertex) in each invocation, while 

updating a static data structure called coloring tree, which is layered into chromatic levels 

(see [170] for more details).

Algorithm Online-Color2(T, k, u);
{* Assign a color to the vertex x>. *}
(* T is a k-colorable tree. *}

begin 
if (k £ 2), then

BipartiteColor(T, o) 
elseif (FF(J,  k, d) is not sufficient), then 

choose some node \)j adjacent to t) in the partitioning class;
Online-Color2(Rj, k - 1, u); 

endif 
end.

Figure 5.7: Halddrsson’s Randomized On-line Coloring Algorithm.

This approximate, randomized, on-line coloring algorithm has a performance ratio 

of 0 (n  /  log n), which can be proved with a similar proof as in the off-line case. In
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addition, Haldorsson's formulation [170] showed how to apply the parallel coloring 

algorithm to obtain an NC  approximation algorithm for the independent sets of size 

Q (nU(k l)) in a k-clique free graph with an independence number greater than

Unfortunately, the processor complexity of removing the k-cliques grows as fast as nk.

We conclude this section summarizing the upper bounds of the performance ratios 

of the on-line graph coloring algorithms shown the literature. Thus, a challenging open 

problem  is to improve any non-optimal bound in the following table:

On-line Graph Coloring Algorithms and their Performance Ratios

Perform ance ratio G raph Source

0 ( 1) Split graphs [164, 165]

0 ( 1) Complement of Chordal [164, 165]

0 ( 1) Complement of Bipartite [164, 165]

3 Complement of Tree Bipartite [164, 165]

3 Interval [215]

o(n) Any graph [248]

0 (n / log*n) Any graph [248]

0 (n / (log n)2) Any graph [169]

0 (n / (log n )/a) Any graph [337]

0 (n / log n) Any graph [170]

O(log n) Bipartite [164, 165]

Ci(log n) Tree Bipartite [164, 165]

O (log n) d-inductive [188]

O (log n) 5-inductive [188]

O (log n) Chordal [188]

Table 5.1: Performance Ratios of On-line Coloring Algorithms for Graphs.
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5.2 On-line Graph Matching
In this section, we present on-line minimum and maximum matching problems for 

both unweighted and weighted graphs. In particular, we apply the dual bounding 

technique to simply reanalyze the weighted matching algorithms and examine the general 

applicability of this technique.

5.2.1 Off-line Problem Statement and Algorithms
Matching and related problems have been studied extensively in the contexts of 

both sequential and parallel computation.

Given a graph G = (V, E), a matching M  is a subset of the edges such that no two 

edges in M  share vertices. The problem is similar to that of finding an independent set of 

edges. In the minimum matching ( min-matching, for short) we wish to minimize I Afl. In 

contrast, we maximize IM I for the maximum matching (max-matching) of weighted 

graph.

We first need to defira some standard terms and technical results, before studying 

the on-line setting of the problem.

• A bipartite graph1 G = (U, V, E) has E c  U x V is the set of nodes with 

U n  V = 0 .

•  A Perfect matching is a matching such that each vertex adjoins exactly one 

edge.

In bipartite graphs, we must have IUI = IVI in order for a perfect matching to 

be possibly exist

• The cost o f matching in a weighted graph is the sum of the weights of the 

edges in the matching.

1 In the following, as commonly done, we refer to the set U as "the boys" and the set V as “the girls"
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•  An one-sided assignment ( or assignment, for short) is a perfect matching in a 

bipartite graph. An abusing terminology considers that a bipartite graph G = 

(U, V, E) with vertex set U u  V and edge set E c  U x V has I u l  *  I v |; we 

also call a matching of size min { IUI , IVI } an assignment.

•  The sum of the weights of the vertices assigned to a vertex \>e V is referred to 

as the load o f  vertex v>. Clearly, if a perfect matching exists, the maximum load 

equals the maximum weight

•  A metric graph is a complete bipartite ( or complete, in short ) graph with 

symmetric edge weights satisfying the triangle inequality.

It is not difficult to prove that computing an optimal solution in the off-line 

assignment is NP-complete for arbitrary weights. (This is done by reduction to the 

Knapsack problem  [237,238] ). However, if the weights are all equal, then an optimal 

solution can be computed in polynomial time by reduction to Maximum Flow Problem 

[161].

We consider The following three off-line (i.e., standard ) matching algorithms:

•  O ffline-M IN : An algorithm that derives min- weight perfect matching [326].

•  Offline-MAXl : An algorithm that produces a max-weight perfect matching, assuming 

that the weights of edges are non-negative [100, 237].

•  Offline-MAX2 : The greedy heuristic for max-weight matching of graph G [20]:

Algorithm Offline-Max2; 
begin

M  :=  0 ;  T  : = G ;  
while E(D * 0  do 
begin

Choose a maximum weight edge e = (u, \>) e £ ( 0  not adjacent to any 
edge currently in the matching M.
T := T \  (u, v); {* T \ ( u ,  \»  denotes the subgraph induced by the vertex 

set V \ [u, d ] *}
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M : = M U { e ) ;
end
output M 

end.

Figure 5.8: A Maxlmum-welght Off-line Matching Algorithm.

5.2.2 Duality Analysis of Weighted Matching Algorithms

The dual bounding technique1 can be used to more easily reanalyze the weighted 

matching algorithms.

The dual problem2 of finding an assignment in a weighted, bipartite graph with 

edge weights is to find a maximum-cost potential such that the weight of any edge is at 

most (for the upper bounds) or at least (for the lower bounds) the sum of the weights of 

the endpoints.

Therefore, in order to find the upper (resp., lower) bound in terms of a dual

transformation, we modify the edge weights d(i, j) to d(i, j) - 11; - flj, where n k denotes

the weight of vertex k. This reduces the cost of the matching by at most (resp., at least)

^  n t , but leaves the cost non-negative.
*

In order to provide an example, we apply this technique to show the performance 

ratio of the last matching algorithm.

Theorem  5.3. In any non-negatively weighted graph, the Offline-MAX2 matching 

algorithm has a competitive factor o f  2.

1 The dual problem allows a larger class of solutions, and possibly tighter bounds, see [272, pp. 225].
2 See subsection 4.1.2.
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Proof: If the greedy algorithm adds an edge (i, j) to the matching, let FI, = I l j  = d(i, j); 

otherwise IT = 0.

If (i, j) is a matched edge, we have that d(i, j) £ max{ n „  11,} <* IT + rij; otherwise, 

suppose i was matched first to k, then d(i, j) £  d(i, k) = 11*.

The cost of the matching is £ n , .  Since £ n ,  is an upper bound of the
l I

maximum cost of matching, the competitiveness of the algorithm is 2. G

5.2 3  On-line Unweighted Matching Algorithms
We consider the on-line version of the problem of constructing a large matching in 

a bipartite graph. In the on-line setting, the boys (the vertices of U) appear either 

one-by-one or in groups, in some arbitrary order. As each boy answers, the algorithm is 

told the disclosure of its identity, its weight (only, in the weighted matching) and all the 

edges incident to it. The on-line algorithm must assign at most one girl from V to each 

boy (vertex) of U; of course, the algorithm is not permitted to choose two edges incident 

with the same girl.

We use the competitive analysis to measure the performance of on-line algorithms 

for the matching problems. Here, we would like to note that we consider the minimal 

competitive ratio to account for the case we deal with a maximization problem rather than 

a minimization one. In the deterministic case, the adversary constructs the graph and 

assigns the weight in advance; thus, it can construct the worst possible sequence. In the 

randomized environment we first assume an oblivious adversary.

Below, we consider both deterministic as well as randomized on-line matching 

algorithms for unweighted bipartite graphs and derive their competitive ratios for either 

case.
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The first competitive ratio achievable by a deterministic algorithm for the bipartite 

matching problem is 1/2. In a bipartite graph one can easily force any deterministic 

algorithm to match only half of the boys, even though there exists a matching that covers 

all the boys. For example, let us consider the following simple deterministic algorithm:

Algorithm Online-D-BMll;
Present a boy who is adjacent to two girls; whichever girl the algorithm 
chooses, present a second boy who is adjacent to chosen girl but not to the 
other one.

Figure 5.9: On-line Deterministic Bipartite Matching Algorithm.

We can also show that the above result applies even for randomized algorithms 

against an adaptive on-line adversary using the following more complicated algorithm, 

which is referred to as ranking algorithm [211].

Algorithm Online-R-BM2;
For the first n/2 girls, the adversary adds edges between the new vertex and
any boy that has not been matched by either the adversary or the algorithm.
The adversary adds the random one of these edges to the matching.

Figure 5.10: Ranking Algorithm.

If T(n) denotes the number of edges in the intersection of the adversary’s and the 

algorithm’s matching after the first n/2 girls have arrived, then E(T(n)) = O(log n). 

Clearly, the adversary matches every girl, a id  the on-line algorithm matches at most 

n/2 + T(n) = n/2 + O(log n) boys.

Karp et al. [211] presented the following randomized on-line algorithm for 

bipartite matching against an oblivious adversary.

1 On-line Deterministic, Bipartite, Matching Algorithm.
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Algorithm Online-R-BM3;
Choose a random order gi, g2 g„ of the n girls, and make the first boy
adjacent to all the girls, the second boy to g t, g2 gn-i and make the ith
boy adjacent to gtf g2 gni.i, in general.

Figure 5.11: Karp’s Randomized Bipartite On-line Matching Algorithm.

The above simple randomized algorithm achieves an asymptotically tight bound of 

n ( l  - 1/e) + o(n), where e is the base of natural logarithms.

This adversary strategy limits every' randomized on-line algorithm to a competitive 

ratio of 1- j  and illustrates what seems to be a rather general phenomenon:

randomization helps considerably against oblivious adversaries, but not against adaptive 

adversaries. A good exercise for the interested reader is to show that this phenomenon 

also holds for the ski rental and the update list problems.

5.2.4 On-line Assignment Algorithms

The assignment problem  (i.e., the problem of finding a bipartite matching of 

minimum weight) is one of the archetypal problems in algorithmic graph theory and in 

combinatorial optimization [100,272].

The natural on-line version of the assignment problem in a weighted bipartite 

graph G = (U, V, U x  V) is defined as follows: the vertices of U appear in some order. 

When a vertex appears, the cost of all adjoining edges are revealed, and some such edge 

has to be added to the matching. We explore the on-line assignment problem in weighted 

bipartite graphs for both deterministic and randomized environments and derive exact 

competitive ratios for either case.
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Khuller et al. [213] and Kalyanasundaram et at. [196 198] independently 

considered the following strongly competitive deterministic algorithm for the min- 

matching assignment:

Algorithm Online-D-PERM1:

Let Af, be the on-line matching computed by the algorithm after arrival of 
vertex e  V and P, denote the matching (called partial matching) 
constructed by the algorithm for the first i service. Initially, M0 and N0 are 
empty.
Step 1: Upon arrival of u, € V compute the off-line matching N, in graph 
Gp̂ . = (P,-, V, Pj x  V) (N, is called the minitnum matchng weight on P;).

Without loss o f  generality (w . I. o . g. ), we assume that the exclusive - or 
Nj © Ni-i consists of a simple odd length augmenting path from o, to a 
vertex u* e  U (e.g., see [213], lemma 2.1 for more explanations).
Step 2: The vertex u, will be free in Afj.i; match u, to u, to obtain Af,-.

Figure 5.12: A Deterministic Permutation Algorithm for A/in-matching Problem.

The competitive analysis of the algorithm, using the dual bounding technique, is a 

little more complicated.

Theorem  5.4. Algorithm Online-D-PERM 1 is at least (2-n-I )-competitive on any 2n- 

node, metric, bipartite graph..

Proof: The odd edges of the path (if any) form a subset of the current min-weight 

assignment with weight no more than the current potential.

Using the dual bounding technique, we find that the augmenting path N, © N,.i 

consists ot one edge. Thus, the weight is bounded by 2 i - \  the weight of the current 

potential, since the weight of the potential is only increased during the course of the 

algorithm, after i £ n vertices are presented. So, using the fact that N,.i £  N„ Vi 5  n, we 

get that Pi £  (2 (i -1 )  - 1) N,., + 2 Ni (2i -1) , Vi <2 n.
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Therefore, this on-line greedy algorithm is at least (2-n - l)-competitive and needs 

0 (nz) time complexity to find a minimum partial bipartite matching at each decision step.

□
Kalyanasundaram and Pruhs [198] proposed another deterministic on-line greedy 

minimum matching (so-called Nearest neighbor) algorithm which achieves a performance 

ratio of (2° - 1) and needs O(n) time at each decision step, in any 2n-node metric space. If 

both of his algorithms are combined, we can easily get a simple deterministic greedy 

algorithm for solving the on-line minimum matching problem when the points are 

constrained to lie on Euclidean space.

Algorithm Online-EMM;
Let U be a set of points and V  = {\)i, \)2,.........\)n} be a set of points on
Euclidean space. 
begin

M := 0 ;  {* the matching M is initially empty * }
Input (U); 
for i = 1 to n do

At the arrival of \)j e  V , add the shortest path between x>, and the 
unmatched points in U to matching M. 

endfor 
return (M); 

end.

Figure 5.13: An On-line Minimum Matching Algorithm with n points Euclidean Space.

This Online-EMM  algorithm has a tight competitive ratio of (2“ - 1), because of 

the metric space and the worst case data structure described in Theorem 2.6 of [196].

Now, we present a simple, deterministic on-line assignment algorithm:

Algorithm Online-D-AS I ;
Upon arrival of a vertex u € U assign it to a neighbor with the current 
minimum load (ties are broken arbitrarily)

Figure 5.14: A Deterministic On-line Assignment Algorithm.
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Theorem 5.5. Online-D-ASI achieves a competitive ratio o f [”log nl + 1.

Azar et al. [33] showed that the competitive ratio of any on-line bipartite 

assignment algorithm is at least [log (n + 1)1.

We combine the above deterministic algorithm with the randomized 

Online-D-BM3 to get the following randomized, assignment on-line algorithm.

Algorithm Online-R-PERM2;
Choose a random permutation Tli of the vertices in V, V 1< i < n.
Upon arrival of vertex x>, e  V, let denote j > 0 the minimum load among 
Uj’s neighbors of V. Assign vertex u* to the highest priority according to
nj+1.

Figure 5.15: A Randomized Permutation Algorithm.

Again, Azar et al. have shown that the expected competitive ratio of the above 

algorithm is at most k = 1 + ln(n), where n = IUI = IVI. They also proved that the 

competitive ratio of any randomized on-line assignment algorithm is at least k - 1 = ln(n).

5.2.5 On-line Maximum Matching
Kalyanasundaran and Pruhs [198] consider the on-line algorithm of maximum 

weight bipartite matching problem. They require the bipartite graph being complete with 

the positive weights and satisfying the triangle inequality.

Algorithm On,:ne-D-MAX3;
Upon arrival of a boy (i.e., a vertex u e U), add the max-weight edge that 
adjoins the presented boy, but is not adjacent to any edge already in the 
matching.

Figure 5.16: A Deterministic On-line Max-matching Algorithm for Metric, Bipartite Graphs.
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We apply again the dual bounding technique to find the optimal competitive ratio 

of the maximum weighted matching algorithm.

Theorem 5.6. In any metric, bipartite graph, the Online-D-MAX3 matching algorithm 

achieves an optimal competitive ratio o f  3.

Proof: If Algorithm Online-D-MAX3 adds an edge (if j) to the matching, let IT = 2d(i ,  j) 

and rij = d(i, j).

If (i.j) is a matched edge, we clearly have that d(i,j) < IT + IT; otherwise,

suppose j was presented and matched to k. If i was not yet matched at the point, then

d(i, j) < d(j. k) = IT; otherwise, suppose /' was already matched to h.

When h was presented, k was not yet matched, so d(k, h) < d(i, h). Thus, we

haved(i . j)  $  d(i, h) + d(h, k) + d(k, j) S 2-d(i, h) + d(k, j) = IT + IT. Therefore, the

weight of the matching is n . / 3 . Since ^  n . is an upper bound on the maximum
i i

weight of a matching, the performance ratio of the considered algorithm is 3. [I

All previous work provides analysis only for metric, bipartite graphs with 

restricted positive weights. In contrast, Bernstein and Rajagopalan [55] propose a variant 

on-line maximum matching algorithm which is 4-competitive on general graph with 

arbitrary weights.

In order to describe this algorithm we first need some definitions and conventions. 

Given a graph G = G ( V ,  E) with the edge set E c  ^ j -  An instance of the on-line

matching problem, consists of G plus some ordering -< on V; if a vertex i arrived earlier 

than j  we say i -< j„ We refer to the vertex that just arrived as \>. Let Y be the set of 

vertices that have not yet arrived plus \) and let X be the set of vertices that have not yet
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matched but have arrived in the past. Let denote by (X, Y) = B the bipartite graph on the 

vertices X and Y with weight as have been given to us. We let m((3) be the weight of 

maximum matching Af(B) on B.
d t f

Next, we define a potential 3(y) =  m(P) - m(B - {y}) which is associated of that vertex 

and let also define a global potential function
d t f

=  m(p) + 2-{weight of the edges that have matches so far},

which is exactly the maximum weight of the matching and measures the efficiency of the 

current service.

We state the on-line maximum matching algorithm using u to denote the vertex 

that x> is matched to (if one exists), in some such matching M.

Algorithm Online-D-WMM;
Examine only two options:
•  MATCH  option: Match \) to u.
•  NONMATCH  option: Add \) to X.
Pick the option that minimize <X>.

Figure 5.17: An On-line Maximum Weighted Matching on General Graphs.

We use conductive analysis and the dual bounding technique to find the 

competitive ratio of this algorithm.

Theorem  5.7. Algorithm Online-D-WMM has a (minimal) competitive ratio o f  4 on 

general graphs with arbitrary weights.

Proof: We use the dual bounding technique in a similar way as in Theorem 5.3. Consider 

any edge (i, j) in the graph. We get that the global potential function has to be at least
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when i and j arrive. Thus, <J>fiail 2: /  2 = ^-IMI for any matching M in the
2  (i. jM M  2

graph. Now, since Od.,.1 = 2-{the weight of the algorithm’s matching), the algorithm has 

a worst case performance of at lest 1/4 (i.e., a competitive ratio of at least 4). □

Bernstein and Rajagopatan [55] proved that any deterministic, on-line (maximum) 

weighted matching algorithm has a competitive ratio of at least 3. We can easily extend 

the proof of Theorem 3.2 of [196] to get the same result on general graphs with arbitrary 

weights.

The same article [55] presents the following deterministic on-line max-matching
3

algorithm which achieves an optimal competitive ratio of at least — for unweighted 

graphs.

Algorithm Online-UMM;
1. Compute T, the new B that would result if NOMATCH was 

chosen.
2. If m(B) > m(T), then MATCH x> and u (if u exists), and 

DISCARD D otherwise.
3. Otherwise, NOMATCH: set B := T.

Figure 5.18: An On-line Maximum Unweighted Matching on General Graphs.

An interesting open question is whether we can bridge the gap between the lower 

and upper competitive bounds of an on-line max-weight matching algorithm on general 

graphs. We know that randomization has been shown to be very helpful in designing on

line algorithms with better competitive ratios. Clearly, we can see that any randomized
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algorithm cannot achieve a better competitive ratio than — in the unweighted case by
4

using an extension of the competitive analysis through Yao's lemma [344].

Another interesting open problem comes up: Can we design randomized 

algorithms against oblivious or lazy adversaries (even harder) with better competitive 

ratios ?

S 3  Specific Combinatorial On-line Problems
In this section we briefly discuss two specific problems, the String Matching and 

the Network Flow problems in on-line setting.

53.1 On-line String Matching
The classical (off-line) string matching problem  detects occurrence of a particular 

substring (called a partition) in another string (i.e., the text).

In on-line setting, the on-line string matching tests of each prefix of the input 

string is superprimitive (i.e., it is covered only by itself) as soon as that the prefix is 

revealed.

Breslauer [67] recently proposed an on-line algorithm which works under the 

general alphabet assumption where the only access to the input string is by comparisons of 

pairs of symbols. This algorithm is simpler and more effective than the (off-line) algorithm 

of Apostolico et al. [353] and uses the pattern processing steps of the Knuth-Morris-Pratt 

string matching algorithm [100] only once. Breslauer’s algorithm scans the input string 

S(i . „] one symbol at a time and uses linear auxiliary space. The new algorithm takes O(n) 

time and at most 2 n comparisons of input symbols.
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It is not our intention to describe this algorithm here, but we would like to point 

out that there are some interesting open problems if we consider variant on-line models for 

the on-line string matching.

53 .2  On-line Network Flow
Very recently, Phillips and Westbrook [280] used the method of competitive 

analysis to study the on-line load balancing problem and describe an efficient scheduler 

that uses only a small number of reassignments to reduce its competitive ratio.

They then applied this problem to compute the maximum flow  in a network. In 

addition, they used an on-line game, the kill game [76], on a bipartite graph G = (U, V, E) 

as a fundamental step in improving the network flow algorithm. They proposed a simple, 

efficient and deterministic on-line algorithm for network maximum flow, which runs in 

CXnt n /ogmM n + n2 log 2 + e n) for any constant e, where IVI = IUI = n and IEI = m.

5 3 3  On-line Scheduling
Classical (or clairvoyant) scheduling theory of tasks (i.e., the characteristics of the 

tasks are known a priori ) is a basic problem in computer science and has been studied 

extensively [159,238]. This problem is often inherently on-line in nature and in many areas 

of operating systems (e.g., time-sharing operation systems [323]); one needs algorithms 

to schedule a sequence of tasks where each task has to be processed before the future of 

the sequence is determined. Most research on on-line scheduling concerns the problem of 

minimizing the length makespan of schedule [41,158,202,311],

There has been some recent work on non-clairvoyant scheduling [8,29,39,259] 

using the competitive analytic approach. Some of these problems are the following;
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•  On-line task scheduling on a single machine where tasks have fixed start and end 

times [343].

•  On-line scheduling in real-time systems [116,227,228].

•  On-line scheduling on parallel machines with different network topologies of n 

processors [44,135,311].

We summarize the upper and lower competitive bounds for scheduling on a 

parallel machine with a specific network topology under the assumption that only running 

times are given dynamically and that there are no dependencies among tasks (in the case 

o f dependencies, see [134]).

Network topology U pper bound Lower bound

7Vo-dimensional mesh 0 ( ./log log n ) C lijio g lo g n  )

PRAM 2- 1/n 2- 1/n

Hypercube 2- 1/n 2- 1/n

One-dimensional mesh 2.5 2- 1/n

d-dimensional mesh 0 ( 2d d /ogd-^loglogn ) + 2* (d logd)4 Cl i j log logn  )

Table 52: On-line Scheduling Algorithms on Parallel Machines and their Competltiv Bounds.

A problem closely related to on-line scheduling is on-line load balancing 

[15,30,31,280], where an algorithm has to assign a sit of tasks to processors and the 

objective is to minimize the maximum processor load.
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We list below some different on-line problems which have searched very recently:

• On-line bin-packing [73];

• On-line knapsack problem  [358]; and

• On-line routing for virtual circuits [15,16,23].

Generally, there are some fundamental questions which remain open in on-line 

scheduling:

• How can on-line models be extended to serve practical scheduling even better?

• Can we design randomized, competitive, scheduling algorithms and show that

randomization is a powerful tool for on-line sched *'ing7

The great tragedy o f  science is the slaying 

o f  a beautiful hypothesis by an ugly fact.

T. H. Huxley
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Chapter 6
On-line Algorithms in Computational 
Geometry

Science is nothing more than a searching.

Albert Einstein

This chapter is concerned with the incremental and on-line applications in 

Computational Geometry. Particularly, we consider the on-line navigation problem in an 

unknown geometric environment and the on-line (visual or geometric) routing problems 

for planar graphs under the model of fixed graph scenario.

6.1 Introduction

Computational Geometry studies the design and analysis of algorithms for solving 

geometric problems. It is a recent field of Theoretical Computer Science, that has 

developed rapidly since it first appeared in M. I. Shamos ’ thesis [314] in 1978. The field 

has already reached a high level of research sophistication and it was important to develop 

more practical algorithms avoiding the use of complicated data structures in order to 

design efficient geometric algorithms.

Randomized incremental algorithms introduced to the field by Clarkson [91] in 

1985 and have been successfully applied to a variety of geometric problems 

[266,267,331]. These algorithms are simpler or asymptotically more efficient in practice 

rather than those previously known. Randomization helps in design and analysis of such
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incremental constructions and gives a general way to “divide and conquer” geometric 

problems, which can be used in the parallel as well as in the sequential computation.

Clarkson and Shor [91] have given a general framework in which geometrical 

problems are stated in terms of objects, regions, and conflicts between objects and regions. 

The algorithms incrementally (i.e., in the sense that the points are introduced one at the 

time) construct the set of regions defined by a current subset of the input objects which 

are not in conflict with these subsets and are maintained in an additional data structure 

which is called the conflict graph. Domains for such incremental geometric problems have 

included:

• Convex hulls [ 125];

• Delaunay trees [61];

• Delaunay triangulation of a set of points in any dimension [62,63,74,167];

•  Voronoi diagram in any dimension [61,62].

•  Visibility graphs [ 168];

There are also some algorithms which do not impose the restriction that all the 

points have to be known in advance and maintained in an auxiliary data structure (i.e., the 

conflict graph) and thus, are more "on-line". Some of such on-line algorithms have been 

for the following problems:

• Convex polygons [266,281,331];

•  Convex hulls of a set of points [266,331 ];

• Packing and Covering geometric objects [ 102,192,229,236,297];

•  Steiner trees [7,334,341];

•  Closest-pair problem [304];

• Robot navigation [110,112,199,273].
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Furthermore, some generalized techniques have been developed, in order to 

dynamize large classes of geometric algorithms (summarized in [266,331]).

6.2 On-line Navigation in an Unknown Environment
In this section, we study the on-line navigation problem, where an on-line

algorithm is trying to reach a specific target point in some unknown geometric 

environment. The goal of an on-line algorithm is to optimize the amount of searching 

(i.e., minimize its competitive ratio of the on-line strategy) before the target point is found. 

This on-line problem has connections with the k-server problem, when the environment is 

a layered graph [112,140,195,200,288].

6.2.1 Problem Motivation and Related Results
A natural problem in robot motion planning is the searching for a specific

recognizable object in a geometric environment with or without obstacles in it.

Particularly, this problem can be divided into two categories:

• Motion path planning through a static and known geometric environment in which the

robot has a complete information (e.g., a map) of the environment in advance

[303,305,345]; and

• Navigation in an unknown scene in which an autonomous robot has to efficiently 

traverse its way through a new environment [195,199].

The design and evaluation of algorithms for such navigation is a classical and

interesting algorithmic problem of motion planning for which a few results exist

[36,109,110,112,220,222,230,251], However, this problem deserves more theoretical 

research.
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We consider the problem of a point robot (automaton) which has to travel in an 

unknown simple class of polygons from any point s (starting point) to another point g 

(goal). It is interesting for many real life situations to consider the second category of the 

problem for finding a path dynamically (i.e., in on-line fashion) based only on the local 

visual information that the mobile robot (i.e., a robot with an on-board vision system) 

gathers through. During the last five years, the interest of on-line algorithms of motion 

planning has grown [60,70,106,109,183,184].

Lumelsky and Stepanov [251] earlier studied a similar problem when a robot with 

a tactile sensor moves in an unknown environment of non-convex obstacles and the robot 

can perceive an obstacle only when it hits it. Then it searches the obstacle’s contour for a 

leaving point with minimum distance to the goal and updates from there. Recently, this 

algorithm has been extended for solving the three-dimensional path planning problem in 

an unknown environment containing obstacles of arbitrary shape, under the assumption 

that an exploration algorithm is available to the robot [250],

Blum et al. [60] have constructed a (6 k + 4)-vertex scene with only one obstacle, 

for an integer k > 2 such that every deterministic on-line algorithm (even if it perceives the 

currently visible part of the scene) needs more than 3 (k  - 2) steps up to reaching the 

target.

Papadimitriou and Yanakakis [273] were the first to consider competitive 

algorithms and analysis for scenes of disjoint isothetic rectangles (i.e., unit-size squares) 

with sides parallel to the axes. They were able to find an asymptotically 3/2-competitive 

algorithm and prove that there was no on-line algorithm that had a bounded competitive 

factor for scenes with arbitrarily thin rectangles (i.e., rectangles of unbounded aspect 

ratio: the ratio of the longer side to its shortest side).
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La'er on, Chan and Lam [70] constructed an on-line algorithm for the robot to 

determine an obstacle-free path to its goal point dynamically, that is, with no information 

about the obstacles in advance. They showed that if the aspect ratios of the obstacles 

were bounded by some constant aspect ratio r of every rectangular obstacle in the scene,

r
then an asymptotically ( 1+ —)-competitive on-line algorithm could be designed for

2

navigating in an unknown environment Recently, Mei and Igarashi [263j proposed an 

3
efficient (1+ — r)-competitive strategy for robot navigation in an unknown environment

containing rectangular and rectilinear obstacles. This on-line algorithm gives a better

8 5
competitive ratio of -  than the ratio — obtained by the mixed heuristic presented in [273] 

for the special case of square obstacles (i.e., when r = 1).

Similar on-line problems have been studied for searching, exploring and mapping 

using visual information [110,195,197,199,273]. In particular, Blum et al. [60] 

formulated the room problem, in which the robot has to move from a comer to the comer 

of a square room, provided that the obstacles are rectangles or convex polygons. They 

presented an on-line algorithm with a tight lower bound of Cl(Jn) on the competitive ratio 

of the Euclidean distance n traveled by the robot to the shortest obstacle avoiding path. 

Recently, Blum  [360] generalized the above result by developing an optimal deterministic

«< > /? )-competitive on the robot’s ilh trip for all i < n. Karloff et al. [206] proposed a

randomized 0 (l)-competitive algorithm for the room problem.

Klein [220] studied another navigation problem in a simple polygon so-called a 

street. A simple planar polygon (P, s, g) with two distinguished vertices, s and g, is a 

street if and only if the two boundary oriented chains L {left) and R (right) from s to g are 

mutually weakly visible (i.e., each point of L can be seen from at least one point of R and
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vice versa). He described an on-line strategy for finding a short path from s to g in a
3

street, which achieved a competitive factor of (1 + —•«){ < 5.72 ) in the Euclidean

metric Li. Moreover, this strategy has a lower bound of J i  ( > 1.41 ) on the competitive 

factor for searching in a street.

Recently, Kleinberg [222] has considered a simple on-line algorithm for this 

problem improving the competitive ratio to 2 ^ 2  ( < 2.83 ). He also proved that his 

strategy has an optimal V2-competitiveness for searching in rectilinear streets.

Additionally, Dalta and Icking [106] defined a new, strictly larger class of simple 

polygons, called Generalized streets (G-streets, for short) and presented an on-line 

strategy which achieves an optimal 9-competitive ratio (resp.,V82-competitive) in Lt 

(resp., Li ) metric for searching in an unknown rectilinear G-street. We can easily extend 

the results and develop an on-line strategy which achieves a competitive ratio of 18 in Lt 

metric for searching in unknown rectilinear twice-G-streets (2-G-streets): that is, a 

rectilinear simple planar polygon, every boundary point of which is mutually weakly 

visible from a point on a horizontal or vertical line segment connecting the two boundary 

oriented chains L and R from the points s and g. The interesting open question remains if 

there exists a more general natural class of simple polygons that can be searched 

competitively.

In the next section, we present a greedy on-line algorithm which achieves a 

competitive ratio of V3 ( < 1.733 ), improving the best upper bound known is the 

literature for the visual searching in a street. Moreover, we show that ln5 » 1.6094 in the 

best randomized competitive upper bound for any on-line algorithm for visual searching a 

street. The last result shows that randomization is strictly more powerful for this problem.
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6.2.2 On-line Visual Searching in Unknown Streets
Let P be a street with a starring point s, and a goal point g on the boundary 

Bd(P). For simplicity, we assume that no three vertices of P are collinear and the 

polygonal chains L and R are ordered in direction from 5 to g. We state some definitions 

and visibility properties o f streets, before we describe the on-line strategy itself.

The visibility polygon Vis rip) of the polygon P from pe/* is the set {ye/*; y is 

visible from p }. The extended visibility polygon EVtfp) of P at a point pe P consists of all 

the boundary points of P that have seen so far.

We define a bay (or cave [222])' B to be a connected chain of Bd(P) such that the 

robot has seen the endpoints of the chain but no other points of it. A pharos (sightpoint 

or cavemouth) of a bay B is the closest reflex vertex of the Bl(P) that robot sees from 

some point of its path. Clearly, we have the left pharos u / (or right pharos x>T) of the left 

bay Bl (resp., right bay B r ) of the street P. Let d ( .,.) denote the L: length of the shortest 

path between two points in P. The shortest (s, gj-path r  from s to g is a chain of the 

segments joined at reflex vertices of P.

We have the following easy facts:

Lemma 6.1. [222]

(i) I f  g  is contained in a bay B (left bay BL or right bay B r) and x  < *  T. then the (x,g)- 

path o f T  touches either pharos (resp., left \>tor right \>r) o f B.

(ii) Let p € Bd(L) (or t,tf tk ) ' and let 4*6 L (resp. 'Fe R) be the (s, pj-boundary chain o f 

P. I f  the robot moves from s top  in P, it will have seen every point on 'P.

(iii) All left (right) pharos o f  P lie to the left (right) o f  all right (left) pharos o f P.

1 Here we would like to mention that we adopt Kleinberg’s  terminology [2 2 2 ], although different 
notations were used when our on-line strategy has been first developed indepentenily.
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We remind that a monotone path  from a point pi to another point pi of the shortest 

(s, gj-path T  is one where the x- and y-coordinates  of the points on the path never 

decrease along the direction of the straight-line path. Next, our on-line strategy is stated 

iteratively.

Procedure Street-SPS; {* Shortest Path Strategy *}

{* This strategy finds a short path from s to g in a street not known in advance. *} 

const s: Point-of-P; { * the starting point * }

g: Point-of-P; { * the goal (target) point * }

var p  : Point-in-P; { * current position * }

q : Point-in-P; { * here an event occurs; q is called an event point * }

v t , v r : Point-of-P; {* the most advanced points on L and R, respectively, that the

robot has so far identified * } 

begin { * Street-PSP *}

p  := s;

Determine EV? (p) and ur ; {* if both of Vi and u r exist *} 

while (g is not visible from p) do

If the reflex vertex \)i (or of ) is not defined,

then {* Case 2: there are no right (resp., left) pharos *} 

p := \)r ; (resp., p := o ; ;) 

else if p, x>i, ur are collinear, 

then { * Case 3 *}

p := the closer of (x>i, Dr );

else (* Case 4: Both of x>t and \)r are visible in £V/<p) *)

Choose a direction of motion such that x>t lies to its left and ”or 

lies to its right. Walk straight to this direction until at some
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point q  of robot’s path we have that or v q  (or v q ) is parallel to 

the .r-axis.

Move on the direction y = - x  (resp., v = x)\ it depends if i)/ 

(resp.. \)r) has been seen first. The robot continues to move on 

the diagonal direction monotonically, updating the extented 

visibility and the points v t, \)r, until it hits the boundary of P or 

arrives at some diagonal point p  in which one of the following 

events happens:

(El). The robot has the same u = max(xu yr) x-  or y-coordinate 

with Vi or u„ respectively:

(E2). One of the chains Lx or Rx becomes completely visible, 

where Lx (resp., Rx) is the portion of boundary chain between 

Vi (resp., ur) and the endpoint of X  lying on the negative x- 

(resp., y-) axis.

Set p : = p ' ; 

end; {*if*}

Determine new £V7<p), Vi and/or v t in EVdp)\

Update EVMp), Vi and/or v , ;

end; {* while *}

Walk straight towards {* Case I *} 

end. {* Street-SPS *}

Figure 6.1: A V3 -competitive On-line Strategy for a S treet
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case 2 case 3

Ur =  (Xr , y r )

=  - X

(X / ,

case 4

Figure 6.2: Robot Movement Cases.
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The following theorem provides the main inductive result.

Theorem 6.1. For any street P. the on-line algorithm Street-SPS creates a (s.g)-path 

that does not exceed V3 times the length d(s, g) o f the shortest (s, g)-parh in P (i.e., this 

deterministic strategy achieves a competitive ratio o f V3 ).

Proof: If only one of the cases 1-3 applies (see figure 6.2), we easily get that the robot 

follows the path from p to p' that is monotone with respect to the chosen coordinate 

system. That is, the robot has traveled no more than y[l d(p, p') in L2 metric.

Now, suppose that Case 4 holds. Let I denote the distance traveled by the robot 

(see Figure 6.2) before v q  or v q  to be parallel to the x-axis and let consider the case in 

which event (El) occurs iirst. Assume that the right pharos u r = (xr, yr) has the same v- 

coordinate as the robot. Also, let be v t = ( X / , y( ) and x, < yr. Then the robot travels / +

>/2 yr, while we have d(p, p') > J(/ + xr)2 + .v” . Thus, the worst-case competitive ratio

of our strategy has to be bounded oy

sup ( I + J z -X ' ) < VT (6.1.1),
l , X r , X r e  9i + J ( l  +  Xr)2 +  X * 

where 91+ denotes the set of non-negative real numbers.

Next, suppose that the event (El) occurs, and v t = (-x/, -yt) has the same x- 

coordinate as the robot. If we have x/> yr, then the robot travels / +V2-x( and we get

that d(p, p') > + x j  . Therefore, the worst-case competitive factor of our strategy

has to be bounded above by

/ + V2 x  JT.U.- + 1
max ( , ' ) -  max ( - . ■ — ) (6.1.2),

9l+ V/2 + Jt,2 w e 9 l + Vw’2 + 1
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where w = and / * 0. A simple analysis shows that the maximum is reached at w = 

V2 at which the maximum value is 2)2 + l = V3.

Corollary 6.1. I f  the street P is rectilinear, the on-line strategy Street-SPS has an 

optimal competitive ratio o f .

Proof: Since Case 4 cannot occur when we apply the greedy algorithm Street-SPS in a 

rectilinear street.

Corollary 6.2. The space complexity' o f the on-line algorithm Street-SPS (i.e., the 

me/rwry size needed by the robot) does not depend on the street but only on the maximum 

complexity o f the visibility polygons encountered.

Kleinberg [222] mentioned (without proof!) that his simple on-line strategy is

1 + V5(  )-competitive. This argument is not true. Even our strategy cannot achieve the
2

above competitive ratio, because V2 is the minimum value that maximizes both formulas 

(6.1.1) and (6./.2).

Theorem 6.2. There is no better randomized ln5-competitive strategy ( ln5 < 1.6095) 

against oblivious adversaries for visual searching an m^nown street.

Proof: The result follows from a randomized technique similar to those in [110] for on

line motion planning.

If a street has four vertices (see Figure 6.3 (a)), there is a strategy with 

competitive ratio of V2 in metric Li-
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g

(a) <b)

Figure 6.3: Visual Search in Streets with four and five Vertices.

If the street has five vertices (see Figure 6.3 (b)), there exists a randomized H r  

competitive algorithm (i.e., the harmonic number Hs -  ln5 < 1.6095) against an oblivious 

adversary. Therefore, there is no randomized strategy which achieves a better 

competitiveness than Hs against an oblivious adversary for any street with more than five 

vertices.

6 3  On-line Geometric Routing for Planar Graphs
We consider the on-line (geometric or visual) routing problems on an initially 

unknown weighted plana, graph under the fixed graph scenario [195] and present 

deterministic competitive algorithms obtain the route. This problem is mostly an on-line 

graph problem, than one that has been done within a framework of computational 

geometry.

6.3.1 On-line Traveling Salesperson Problem
Routing problems [46,126,272] involve the periodic collection and delivery of 

goods and services which are of great practical importance. The practical goal of finding a 

route of such problems is the cost minimization and service improvement Abstractions of 

these problems can be modeled easily and naturally with graphs. Unfortunately, many of 

these interesting standard (off-line) routing problems, including for instance the well 

known k- traveling salesperson problem [237,238,272] (i.e., k-TSP, for short, where k £ 

1) are NP-complete in the sense of Cook [97] and Karp [209].
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Pruhs et al. [195] considered the on-line I-TSP  (also called Visual J-TSP) for a 

planar weighted graph G = (V, E) under the fixed graph scenario (FGS, for short; where 

the on-line algorithm is aware of every edge incident to a visited vertex, but IVI = n is not 

known in advance). This on-line FGS is variant to that so-called point-by-point scenario 

[112,273], where the points are revealed one at a time. The goal of the searcher’s robot is 

to visit each vertex of G incurring as little cost as possible.

Pruhs et al. [195] presented the following modified on-line algorithm for the visual 

l-TSP  under the FGS. We note that the distances of the vertices require only to be non

negative w.l.o.g. and need not satisfy the triangle inequality in the planar embedding.

Algorithm Visual-l-TSP (x, y: Vertices; G : Graph);

\
{* Note that x is the starting vertex of G * }

1. Compute ONG (G);

{* ONG(G) is a planar graph that contains the MST of Visibility graph of G; this 

step takes 0 (n 2 /ogn) tim complexity *).

2. Vy e ONG(G). apply Modified-Shortcut (x, y: Vertices; ONG(G): Graph); {* in
i '

0 (n 2 /t»gn) time *}.

Procedure Modified-Shortcut (x, y; Vertices; G: Graph);

{* Traveling from x, the searcher visits y for the first time *} 

begin

for each boundary edge \)w

if the visited for first lime vertex y belongs to an object (obstacle), then 

the searcher (robot) circumnavigates the perimeter of the object, 

end; {* if *}
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if Block Cow) = 0 ,  then 

add a jump edge y w at the end of Incident (y) and Incident (w)',. 

endfor;

for each edge yz e Incident (y) do

if z is a boundary vertex and yz is a shortcut, then traverse the edge yz;.

Shortcut (y. G);

elseif z is a boundary vertex and yz is a jump edge, then 

traverse the shortest known path from y to z;

Shortcut (y, z. G)\

endif 

endfor

return to x along the shortest known path; 

end. {* of procedure* }

Figure 6.4: A Modified On-line Algorithm for the Visual l-TSP.

Theorem 6.3. The on-line algorithm1 Visual l-TSP is 17-competitive.

Proof: Theorem 4.7 [ 195].

The total complexity time of of the above on-line heuristic is Q{n2 logn): that is, 

the same time required by the standard (off-line) all-pair shortest path algorithms for 

sparse graphs (272]. This result shows that the ability of an adversary to map from a 

distance is the reason that competitive algorithms cannot be obtained for mapping 

problems [110,199] under a point-by-point scenario ( PBPS ).

Furthermore, this heuristic easily solves an interesting open question (see [109], 

Conjecture I ) that there exists a constant competitive algorithm for exploring rectilinear

1 Note that this on-line strategy uses terminology from [195], which is not repeated here.
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polygons with any number of rectilinear obstacles in it. Clearly, this problem is solvable 

under FGS even for general simple polygons and obstacles, but it remains open under the 

PBPS for rectilinear polygons and obstacles.

The computation of a tour in on-line setting under the FGS has some relations to 

broadcasting in a network with unknown topology. It would be challenging and interesting 

to generalize the result for on-line TSP on a general weighted graph under FGS.

6.3.2 On-line Geometric k-CPP for Planar Graphs

We extend the visual l-TSP  to k-CCP (i.e., k-Chinese Postman Problem, k>l) and 

other on-line routing problems in plane.

Definition 6.1. Let G = (V, E) be an undirected multigraph with a positive cost function 

defined on E c  V x V, A i-route (or ^-circuit) is a set of /e-cycles that start from a fixed 

vertex \js (post office) and collectively cover every edge in the planar graph. When k = 1, 

k-CPP is degenerated as 1-CPP.

Lemma 6.2. There is an O(n*logn) approximation algorithm for the visual 1-CPP 

which achieves a competitive ratio o f 17.

Proof: By Theorem 6.3.

Lemma 6.3. Assume that the degree o f a fixed node \), in a planar graph G is 2k-1 (or 

2k; k -1 ,2,3,...). Then the optimal tour o f the visual k-CPP can be immediately formed 

from that o f visual I-CPP.
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Proof: The odd node (the case of an even node is similar) \)4 must be matched for visual 

1-CPP. After forming the optimal tour for visual 1-CPP, u, becomes an even node the 

degree of which is at least 2k. Starting from o, a postman has to go through it at least 2k 

times in order to traverse each edge at least once in G. The 2k times correspond to k- 

cycle tours for which at least one edge differs from others. Considering addiig no new 

edge to G when the tour of visual 1-CPP is decomposed into that of k-CPP, which is 

optimal.

The on-line k-CPP cannot be obtained by Lemma 6.3 when the degree of fixed 

node is 2 n less than 2 k after applying a non-negative weighted on-line matching 

algorithm. In other words, assuming that n postmen in tours can be formed at o, using 

matching algorithm, there are k-n postmen to be arranged. We want to construct k-n non

decreasing tours pi (where i = n+1 k) through node us subject to the on-line version of

definition 6.1. These tours obtained in such way are called artificial tours.

Definition 6.2. A spanning tree (ST) with root node is defined as an arborecent 

spanning tree (AST) T  if the distance is the shortest one between os and each node 

belonging to T.

Lemma 6.4. Each artificial tour contains at most one edge which does not belong to a 

arborecent spanning tree T.

Proof: Assume that an artificial tour p contains two edges et, e2 <E T. We consider the ei 

directly (or indirectly) connected with ei, we easily reach a contradiction.

The above Lemma 6.4 gives the construction of those k-n artificial tours, denoted 

by P(E), based on AST T  using the following procedure:
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Algorithm A ^  n *

1. Select ea h e e  E.

2. Compute each smallest Euler tour p(e) containing e from vertex \)j.

Figure 6.5: An Algorithm to find the Artificial Tours of a Planar Graph.

Clearly, |£ | -artificial tours can be found in OflVI2) time using Lemma 6.4. We can

also order these tours P(E) in 0(IVI2-/«glVI2) time. Therefore, the tours P(E) can be found 

in at most 0(IVI3) time, since the arborecent spanning tree T  can be computed in 0(IVt3) 

time.

Next, we assume that the optimum solution for visual 1-CPP in a planar G is 

obtained from node \), the degree of which is changed into 2 n after matching. Thereore,

there are (k-n) artificial tours obtained from P(E), denoted by p j ^ - n )  Now, we have the

following ( semi) on-line algorithm for the geometric k-CPP\

Algorithm v j* _#f)

1. Compute visual 1-CPP, denoted by v j ;  {* This step takes 0(IVI2 /oglVI) time

complexity *}.

2. Find ASP T  with roofus; {* in 0(!VI3) time *}.

3. Find P(E), based on T; {* in 0(IVI3) time *}.

4. Design k post tours from v j and p ^ ~ n^  P(E); {* in 0(1 Vi) time *}.

Figure 6.6: An On-line Visual k-CPP Algorithm
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Theorem 6.4. The Algorithm fo r on-line k-CPP is an 0(IVI3 ) approximation

on-line algorithm which achieves a competitive ratio o f  18.

Proof: Step 1 designs n postmen’s tours, denoted by OPT/(I), where I is an instance for

the visual k-CPP. Step 2 constructs (k-n) 1-post tours denoted by p ^ ~ n  ̂€ P(E). We

have that the optimum solution OPTrfl) of k-CPP obtained by the above algorithm

y ( k - n )  satjsfjes following formulas:
n *

! OPTk(I) | > | />(* " n ) (I)| and 17- |oPTk(I)| > I OPT,(I) I. n

Therefore, | V(* ~ n )(I)| = I OPT,(I) + P (* “ n )(I)| < 18-1 OPTk(I) I. n n

Similarly, it is easy to obtain greedy competitive algorithms which yield 

approximate solutions for other routing problems, for example k-DCPP (directed k-CPP), 

k-TSP, k-SCP (k-stacker-cranes problem) which are all NP-complete for k > 1, since they 

contain the Hamiltonian Path Problem as a particular case [209].

Recently, Ausiello et al. [16] have considered a variant on-line version of the 

routing problem for planar graphs in which each request can be served only after a certain 

release time. This on-line scheduling problem has many applications from robotics to 

several transportation problems. They have proposed a 5/2-competitive exponential 

routing algorithm and a 3-competitive (resp., 7/3-competitive) strategy for an Euclidean 

space (resp., line). They also proved that no on-line routing algorithm (either deterministic 

or randomized) could achieve a competitive factor lower than 2 in Euclidean plane. This 

lower bound is not necessarily valid for every metric space.

The main open question is to bridge the gap between lower and upper bounds for 

al these problems mentioned in this section. Moreover, anothe’ challenging open research
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problem is to extend these results for general graphs or different metric spaces and 

network topologies using more than one server (robot) as well..

The real danger is not that robots will begin to think 

like hitmans, but that humans will begin to think like robots.

S. J. Harris
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Conclusions and Future Directions
There is nothing new except what has been forgotten.

Marie Antoinette

How extremely stupid not to have thought o f that!

T. H. Hux’ y

There remain many on-line applications which have not yet been explored. Our 

research by no means covers all the areas where the theory of on-line algorithms applies. 

Aside from designing algorithms in many ireas where on-line problems arise, more general 

issues in this field are not searched. Moreover, the field of incremental algorithms has 

many open problems of both theoretical and practical interest.

We conclude with some remarks and suggestions for new directions in the study of 

on-line algorithms. Finally, we summarize our results and identify some important new 

areas worth considering for future research.

7.1 A Critique of Competitive Analysis

Competitive analysis of on-line algorithms is defined as the worst-case ratio 

between its cost and that of a hypothetical optimal off-line algorithm. In other words, it is 

a theoretical framework used to determine the disadvantage of an on-line algorithm, which 

has incomplete information about the future (e.g., think of stock market investment). 

Thus, on-line algorithms often perform much worse than the off-line strategies in many
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situations inherently on-line in nature. On the other hand, it may seem unfair to allow the 

off-line algorithm to select (without cost) the best initial configuration, whereas the on-line 

algorithm is assumed to start with the worst one.

Since competitiveness is a worst-case analysis, it may fail to reflect the “typical” 

behavior of any algorithm. For example, NP-compIeteness is an analogous situation 

where a problem is hard in the worst case, but not necessarily in the typical case. A variant 

approach is to combine the competitive and average-case analyses by looking at on-line 

algorithms, which achieve small competitiveness and also perform efficiently against 

typical request sequences.

A criticism that competitive analysis measures how well an algorithm performs in 

the case of an adversarial future has the following two implications:

• !t results in large theoretical lower bounds which are not practical, and

• If an algorithm has an optimal competitive ratio, this does not give any information 

about the running time of the algorithm when the future is pathological.

There may be alternative measures to competitive analysis that are relevant to the 

usefulness of an algorithm, although the measure used to evaluate algorithms influences 

the kind of the developed algorithms, paradoxically. Perhaps on-line problems are a means 

of exploring this issue.

7.1.2 New On-line Models
Ben-David and Borodin [350] have suggested a new measure of an on-line 

algorithm. They presented the following example to describe a shortcoming of 

competitive analysis. Let us consider the problem o f buying an insurance policy: paying 

an annual premium of p  to insure a car against theft is a non-competitive strategy'. Let the 

cost of repairing or replacing a car be c. An algorithm has to decide every year whether to
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buy auto insurance or not. The (^/^-competitive algorithm that never buys insurance is 

optimal. This is a contradiction to our intuition that insurance is not good if a claim is 

never presented to the insurance company.

This problem which is difficult to be solved by the traditional competitive analysis 

has an optimal solution using the Max /  Max measure [350], which compares the worst 

case amortized behavior of an algorithm with that of the off-line one. On the other hand, 

minimizing Max /  Max ration forces us to buy insurance evry year as long as p < c. 

Although this measure has the additional benefit that on-line algorithms can be directly 

compared, there are many interesting unsolved problems.

It is unlikely to have a case where there exists an algorithm that performs better 

than all the others on every input. Thus, the following interesting question remains open: 

Is there a better and general way to compare on-line algorithms efficiently without 

comparing each one to the optimal off-line algorithm?

7.3 Future Work

73.1 Lookahead

The weak lookahead is a theoretical on-line model against an oblivious adversary, 

while strong lookahead is a practical one as well, which improves the competitive ratio of 

some on-line algorithms (i.e., paging problem).

Paradoxically, no {finite*) lookahead is sufficient for any improvement of 

competitive performance for the decision-making tasks (e.g., k-server problem). The 

objective here is to provide a more realistic and reasonably general on-line framework that 

can suggest how to design efficient algorithms which are competitively better.

1 The potential benefit of the finite lookahead with respect to the new Max/Max ratio becomes an 
important issue.
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Generally, there may exist a “principle of optimality" for a whole class of on-line 

problems so that it can competitively determine the current state of the optimal off-line 

problem when provided with the k-subsequent future requests. It is also plausible that 

every on-line problem with lookahead (or even finite lookahead) may efficiently identify 

the optimal on-line strategy (in the form of a dynamic program) using some approach.

73.2 On-line Learning Versus Off-line Learning

An interesting application of on-line theory of algorithms should be on learning 

theory in the field of Artificial Intelligence (Al). Here, just as in the well studied on-line 

model, only the set of possible queries is known, wbile in the off-line model the sequence 

of queries is known to the learner in advance. We would like a student in on-line model 

to learn an unknown concept from a sequence of “guess and test ” trials and to make as 

few mistakes as possible.

It would be interesting to give a combinatorial characterization of the number of 

instances in the off-line model and design a competitive (maybe a permutation) algorithm 

which bounds the number of mistakes of on-line learning versus off-line learning.

7.3.3 Central Open Problems

There are several fundamental topics in the theory of on-line algorithms and many 

challenging problems, that remain unsolved. The following general considerations are of 

the most interest to theoretical computer science, while some specific open questions have 

already been discussed in each chapter:

• Find new complexity models for on-line and incremental computation. Specifically, we 

are interested in practical on-line models to analyze typical request sequences even 

better. We also ask whether there exists a better performance measure than the
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competitive analytic approach without risk or uncertainty' for the decision making on

line problems.

• Improve the lower or upper bounds on competitiveness of on-line algorithms and 

bridge all the (large) gaps left between the already proven ones. For example, find 

lower bounds on loose competitiveness [347] for LRU, FIFO and MARK on-line 

strategies. Also, improve or optimize the competitive ratios for weighted caching, k- 

server and other combinatorial on-line problems.

• Extend the theory of on-line algorithms to packing and covering geometric objects (i.e., 

on-line tiling).

•  Consider new on-line algorithms and applications in parallel and distributed 

environment.

• It is of great interest whether randomization can help to improve the competitive 

performance of the algorithms for on-line problems, generally.

Finally, a very important direction for future research is to derive a general 

complexity theory for the tradeoff between running time and competitiveness.

7.4 Thesis Summary

In this thesis we studied the design and analysis of on-line algorithms for several 

combinatorial optimization problems: paging, weighted caching, the k-server problem, 

graph coloring and weighted marching.

We first presented some notations and results about the on-line computation as 

well as the on-line complexity bounds, including those for NP-complete problems, when 

the computational resources were restricted.

We then applied the method of competitive analysis to study the list update and 

paging problems considering simple related results under variant on-line models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 7 Conclusions and Future Directions 144

Next, we extended the theory of random walks and that of electrical networks to 

the k-server and its related problems for non-resistive spaces against an adaptive 

adversary.

We continued the study with the on-line coloring algorithms for particular graphs 

giving a slightly tighter competitive performance ratio for the coloring d-inductive graphs 

under the framework of the strong lookahead.

We examined the on-line algorithms for minimum or maximum weighted matching 

as well as for the on-line assignment problet.. using the dual bounding technique to simply 

reanalyze them.

Lastly, we applied the theory of on-line algorithms for specific distributed and 

geometric computational problems. Particularly, we presented an on-line navigation 

strategy in an unknown simple polygonal environment of streets, which achieves the best 

(nearly optimal) competitive ratio known in the literature.

In closing, we would like to believe that new theory and beautiful mathematics will 

grow up as the world of on-line algorithms matures. Furthermore, we hope that more 

research and cross-fertilization in the areas of dynamic and on-line algorithms will bridge 

the gap between practical and theoretical algorithms.

A pessimist is an optimist w ho tried to put the theory into practice.

Anonymous

This is not the end. It is not even the beginning o f the end.

But it is, perhaps, the end o f  the beginning.

Winston Churchill
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