
www.manaraa.com

PM-1 31/j "k4" PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/ISO #2 EQUIVALENT

I .O

l .l

* f * « I s

!: j“ III™U- (a
12.0

L 2 5 1 u

1.8

* 4

PRECISIONSM RESOLUTION TARGETS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 * 1 National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A0N4

Bibliotheque rationale
du Canada

Direction d es acquisitions et
d es services bibliographiques

395. rue Wellington
O ttaw a (Ontario)
K 1A 0 N 4

(Am f'te

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especiatly if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

La qualite de cette microforme
depend grandement de la qualite
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualite
superieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I’universite
qui a confere le grade.

La qualite d’impression de
certaines pages peut laisser a
desirer, surtout si les pages
originales ont ete
dactylographies a I’aide d’un
ruban use ou si I’universite nous
a fait parvenir une photocopie de
qualite inferieure.

La reproduction, meme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subsequents.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Efficient Dynamic and On-line Computation
with Applications

by

Anthony Spatharis, B. Sc. & M. Sc.

A thesis subm itted to

the Faculty of G raduate Studies and Research

in partial fulfillment of

the requirem ents for the degree of

M aster of Science

Ottawa-Carleton Institute for Computer Science

School o f Computer Science

Carleton University

Ottawa, Ontario

May 17,1995

© copyright

1995, Anthony Spatharis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 * 1 National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 W ellington S treet
O ttaw a. Ontario
K1A 0N 4

Bibliothfeque nationale
du Canada

Direction d es acquisitions et
d es services bibliographiques

395, rue Wellington
O ttaw a (Ontario)
K 1A 0N4

Your fife Votre r e fe r e n c e

Our hie Notre reference

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

The suthor retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0 - o l 2 - 0 9 0 1 6 - 7

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Name An 7 t~*QR f $F*f) 7t fA fc I 3
Dissertation Abstracts International is a rranged by tsroad, general subject categories. Please select the one subject which mcst
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided

SUBJECT TERM SUBJECT CODE

Subject Categories

THI HUMANITIES AND SOCIAL SCIENCES
CO M M U N IC A TIO N S A ND THE ARTS
Architecture 0 7 2 9
Art History 0 3 7 7
Cinema 0 9 0 0
Dance 0 3 7 8
Fine Arts 0 3 5 7
Information Science 0 7 2 3
Journalism 0391
Library Science 0 3 9 9
M ass Communications 0 7 0 8
Music 0 4 1 3
Speech Communication 0 4 5 9
Theater 0 4 6 5

EDUCATION
General 0 5 1 5
Administration 0 5 1 4
Adult and Continuing 0 5 1 6
Agricultural 0 5 1 7
Art 0 2 7 3
Bilmaual and Multicultural 0 2 8 2
Business 0 6 8 8
Community C ollege 0 2 7 5
Curriculum and Instruction 0 7 2 7
Early Childhood 0 5 1 8
Elementary 0 5 2 4
Finance 0 2 7 7
G uidance and Counseling 0 5 1 9
Health 0 6 8 0
Higher 0 7 4 5
History o f 0 5 2 0
Home Economics 0 2 7 8
Industrial 0521
Language and Literature 0 2 7 9
Mathematics 0 2 8 0
Music 0 5 2 2
Philosophy of 0 9 9 8
Physicc*1 0 5 2 3

Psychology
Reading
Religious
Sciences
Secondary
Social Sciences
Sociology of
Special
Teacher Training
Technology
Tests onaM easurem enfs
Vocational

LANGUAGE, LITERATURE AND
LINGUISTICS
langu age

Ancient
Linguistics
Modern

literature
General
Classical
Comparative
Medieval
Modern
Afi icon
American
Asian
Canadian {English*
Canadion (French)
English
Germanic
Latin American
Middle Eastern
Romance
Slavic and Erst European

0 5 2 5
0 5 3 5
0 5 2 7
0 7 1 4
0 5 3 3
0 5 3 4
0 3 4 0
0 5 2 9
0 5 3 0
0 7 1 0
0 2 8 8
0 7 4 7

0 6 7 9 Uzr 9
0 2 9 0
0291

0401
0 2 9 4
0 2 9 5
0 2 9 7
0 2 9 8
0 3 1 6
0591
0 3 0 5
0 3 5 2
0 3 5 5
0 5 9 3
031 1
0 3 1 2
0 3 1 5
0 3 1 3
0 3 1 4

P H IL O SO PH Y , RELIGION A ND
THEOLOGY
Philosophy
ReligionGeneral

B ib l ic a l S tu d ie s
Clergy History of
P h i lo s o p h y o f

Theology

SOCIAL SCIENCES
AmpHrr.i Studies
A' ‘hropology

Archaeo'ogy
Cultural
Physical

Business Administration
General
Accounting
Banking
M anagement Marketing

Canadian Studies
Economics

General
Agricultural
Commerce Bus-ness
Finance
History
Labor
T h e o ry

f olklore
Geography
Gerontology
History

G e n e r a l

0 4 2 2

0 3 1 8
0321
0 3 1 9
0 3 2 0
0 3 2 2
0 4 6 9

0 3 2 3

0 3 2 4
0 3 2 6
0 3 2 7

0 3 1 0
0 2 7 2
0 7 7 0
0 4 5 4
0 3 3 8
0 3 8 5

0501
0 5 0 3
0 5 0 5
0 5 0 8
0 5 0 9
0 5 1 0
0511
0 3 5 8
0 3 6 6
0351

0 5 7 8

Ancient 0 5 7 9
M edieval 0581
Modern 0 5 8 2
Black 0 3 2 8
African 0331
Asia, Australia and O ceam a 0 3 3 2
Canadian 0 3 3 4
European 0 3 3 5
Latin American 0 3 3 6
M iddle Eastern 0 3 3 3
Unfted States 0 3 3 7

History a Science 0 5 8 5
Law 0 3 9 8
Political Sc'ence

General 0 6 1 5
International Law and

Relat.ons 0 6 1 6
Public Administration 0 6 1 7

Recreation 0 8 1 4
Social Work 0 4 5 2
Sociology

General 0 6 2 6
Criminology and Penology 0 6 2 7
Dem ography 0 9 3 8
Ethn-c and Racial Studies 0631
Individual and Family

Studies 0 6 2 8
Industrial and Labor

Relations 0 6 2 9
Pjbiic and Social W elfare 0 6 3 0
Social Structure ond

Development ̂ 0 7 0 0
Theory and Methods 0 3 4 4

Transportation 0 7 0 9
Urban <"H Regional Planning 0 9 9 9
W - , s Studies 0 4 5 3

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Aqricuiture

General 0 4 7 3
Agronomy 0 2 8 5
Animal Culture and

Nutiition 0 4 7 5
Animal Pathology 0 4 7 6
Food Science and

Technology 0 3 5 9
Forestry ana Wildlife 0 4 7 8
Plant Culture 0 4 7 9
Plant Pathc^cgy 0 4 8 0
Plant Physiology 0 8 1 7
Range M anagement 0 7 77
W ood Technology 0 7 4 6

Bioloqy
General 0 3 0 6
Anatomy 0 2 8 7
Biostafistics 0 3 0 8
Botany 0 3 0 9
Cell 0 3 7 9
Ecology 0 3 2 9
Entomology 0 3 5 3
Genetics 0 3 6 9
lim nologv 0 7 9 3
M icrobiofogy 0 4 1 0
Molecular 0 3 0 7
Neuroscience 0 3 1 /
O ceanography G 4] 6
Physiology 0 4 3 3
Radiation 0821
Veterinary Science 0 7 7 8
Zoology 0 4 7 2

Biophysics
General 0 7 8 6
Medical 0 7 6 0

EARTH SCIENCES
Biogeochemistry 0 4 2 5
Geochemistry 0 9 9 6

G eodesy 0 3 7 0
G eoiogy 0 3 7 ?
G eophysics 0 3 7 3
Hydrology 0 3 8 8
Mineralogy 041 1
Paleobotany 0 3 4 5
Paleoecology 0 4 2 6
Paleontology 0 4 1 8
Paleozoology 0 9 8 5
Palynology 0 4 2 7
Physical G eography 0 3 6 8
Physical O ceanography 0 4 1 5

HEALTH A ND ENVIRONM ENTAL
SCIENCES
Environmental Sciences 0 7 6 8
Health Sciences

General 0 5 6 6
Audtotagy 0 3 0 0
Chemotherapy 0 9 9 2
Dentistry 0 5 6 7
Education 0 3 5 0
Hospital M anagem ent 0 7 6 9
Human Development 0 7 5 8
Immunology 0^ 82
M edicine and Surgery 0 5 6 4
Mental H^ahh Q 347
Nurs.ng 0 5 6 9
Nutrition 0 5 7 0
Obstetrrcs and G ynecoloqy 0 3 8 0
O ccupational Health ancf

The „py 0 3 5 4
Ophthalm ology 0381
Pathology 0571
Pharmacology 0 4 1 9
Pharmacy 0 5 7 2
Physical Therapy 0 3 8 2
Public Health 0 5 7 3
Radiology 0 5 7 4
Recreation 0 5 7 5

Speech Pathology 0 4 6 0
Toxicology 0 3 8 2

Home Economics 0 386

PHYSICAL SCIENCES
P u r e S c i e n c e s
Chemistry

General 0 4 8 5
Agricultural 0 7 4 9
Analytical 0 4 8 6
Biochemistry 0 4 8 7
Inorganic 0 4 8 8
F1 jctear 0 7 3 8
^Jryamc 0 4 9 0
Pharrraceutirai 0491
Physical 0 4 9 4
Polymer 0 4 9 5
Radiation 0 7 5 4

Mathematics 0 4 0 5
Physics

General 0 6 0 5
Acoustics 0 9 8 6
Astronomy and

Astrophysics 0 6 0 6
Atmospnenc Science 0 6 0 8
Atomic 0 7 4 8
Electronics and Electricity 0 6 0 7
Elementary Particles and

High Energy 0 7 9 8
Fluid and Piasma 0 7 5 9
Molecular 0 6 0 9
Nuclear 0 6 1 0
Optics 0 7 5 2
Rarliofion 0 7 5 6
Solid State 061 '

Statistics 0 4 6 3

Applied Sciences
Applied M echanics 0 3 4 6
Computer Science 0 9 8 4

F n y i n e e 1 <nq
G e n e r a l
Aerospace
Agricultural
Automot'ue
B'omedical
Chemical
Civil
Electronics and Electrical
Heat and Thermodynamics
H y d ra u l ic
i n d u s t r i a l

M cin nc
Materials Science
M'iclianical
M e rc i l lu rg y
Mining
Nuclear
Packaging
Petroleum
.sanitary and Municipal
System Science

G to te c h iio lo a y
O perations Research
Plastics Technology
Tertne Technology

PSYCHOLOGY
General
Behavioral
C lirico l
Developmental
Experimental
Industrial
Personality
Phytiologlccil
Psychobiology
Psychometrics
Social

0 5 3 7
0 5 3 8
0 5 3 9
0 5 4 0
0541
0 5 4 2
0 5 4 3
0 5 4 4
0 3 4 8
0 5 4 5
0 5 4 6
0 5 4 7
0 7 9 4
0 5 4 8
0 7 4 3
0551
C552
0 5 4 9
0 7 6 5
0 5 5 4
0 7 9 0
0 4 2 8
0 7 9 6
0 7 9 5
0 9 9 4

0621
0 3 8 4
0 6 2 2
0 6 2 0
0 6 2 3
0 6 2 4
0 6 2 5
0 9 8 9
0 3 4 9
0 6 3 2
0451

®
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The undersigned hereby recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis:

Efficient Dynamic and On-line Computation

with Applications

submitted by

Anthony Spatharis, B. Sc. & M. Sc.

in partial fulfillment of the requirements

for the degree of Master of Science

Director. School of Computer Science

c c

Thesis Supervisor

Carleton University

May 17. 1995

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract
The best effect o f any thesis is that

it excites the reader to se lf activity.

Thom as Carlyle

Dynamic and on-line computation have generated a challenging and theoretically

interesting area of research with a wide variety of on-line applications in relevant fields of

Computer Science. Dynamic and on-line algorithms are concerned with updating the

output to a problem as the input is changed incrementally. We use competitive analysis to

measure the efficiency of an on-line algorithm with respect to the performance of the

optimal off-line algorithm.

This thesis studies the design and analysis of efficient on-line algorithms for several

combinatorial problems: list update, paging, weighted caching, the k-server problems,

graph coloring and on-line matching. We also consider some specific distributed and

geometric computations in on-line setting.

The goal of this research is to demonstrate variations of the standard on-line

models and develop robust on-line algorithms based on the generalized on-line

frameworks using competitive analysis. It is hoped that the maturity of the theory o f on

line algorithms and the cross-fertilization of dynamic and on-line computation will help in

bridging the gap between theory and practice in the field of computer algorithms.

As fo r me, a ll I know is that I know nothing.

Socrates

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgments

I am deeply grateful to my supervisor Evangelos Kranakis for his guidance and

support. He has helped me to begin my research and I might not have finished it without

his kindness and trust. Simply, I would like to say that he is a great teacher and a

wonderful person! I feel very fortunate to have had him as an advisor.

I would also like to express my gratitude to my thesis defense committee,

professors D. Krizanc and J. Urrutia, for their valuable questions, helpful suggestions and

useful comments.

I thank all my professors for what they taught me and the administration of the

School of Computer Science for their help during my study at Carleton. Several

colleagues have been helpful to me during the preparation of this research. Especially, I

wish to thank Govindachari Raghunath and Jelber Shirabad for their technical help and

assistance on the computers; their knowledge, moral support and friendship were much

appreciated. I would also like to acknowledge my office-mate HongLing Chen, who has

been supportive.

I am fortunate to have wonderful family and friends who have always been there

when I needed their support during this undertaking.

Finally, I thank my loving parents, Spiros and Artemis, who live in the beautiful

island of Santorini and who have a crucial influence in my life. Moreover, the tiny

“Christoulaki” and the memory of my grandfather, Marcos, have been always in my heart

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Dedication

To my loving parents

and to my dear teachers,

I owe my life to my parents and

my good life to my teachers.

Aristotle

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter ? Theory and Complexity of On-line Algorithms 13

— Connectivity [79,132],

— Spanning trees and forests [119,147,149,160.319],

— Shortest paths [17,18,80,187],

— Biconnected and triconnected components [119,187,289,340],

— Transitive closure or reachability [185,186],

— Planarity testing [118,128,129,130,321,322];

• Computational Geometry [266,271,281];

• Data bases [1];

• Syntax-directed editors and grammars [293,294,295,298];

• Data-flow analysis [13,53,298]; and

• Code generation and optimization [187].

There have been parallel incremental algorithms for minimum spanning trees and

connected components [275]. Also, a beautiful research on dynamic data structures and

algorithms for graphs can be found in [93.187],

2.1.2 On-line Algorithms versus Off-line Algorithms

An on-line algorithm is one that receives a sequence of requests, and performs an

irrevocable answer (action) in response to each request before the next request arrives.

Each sequence of requests and corresponding actions have an associated cost.

Aho, Hopcroft and Uliman ([3], pp. 109) define on-line execution, for an input

sequence r, as follows:

Definition. The on-line execution of r requires that the instructions in r be

executed from left to right, executing the ith instruction in r without

looking at any following instructions. The off-line execution of r permits

all the r to be scanned before answers need to be produced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3: On-line Models and Applications... 32
3.1 O n -l in e T h e o r e t ic a l M o d e l s ..32

3.1.1 On-line Game Theory...32

3.1.2 Task Systems and On-line Algorithms... 35

3 .2 L is t U p d a t e P r o b l e m ...37

3.2.1 Problem M otivation ...37

3.2.2 Self-adjusting Linear List Algorithms... 38

3.2.3 Randomized Competitive List- Upuj** Algorithms.. 42

3.2.4 Weighted List Update Problem .. 44

3 .3 P a g in g P r o b l e m ..4 7

3.3.1 Problem Motivation and Complexity o f the Competitive Analysis... 48

3.3.2 Paging Algorithms... 50

3.3.3 Randomized Paging ...51

3.3.4 Paging with Weak and Strong Lookahead..52

3.3.4 Competitive Distributed Paging .. 5 5

3.3.5 Recen. Related Results o f the Paging Problem ...61

Chapter 4: The k-Server Problem and Algorithms.. 63
4 .1 T h e W e i g h t e d C a c h in g a n d k -S e r v e r P r o b l e m s ..6 3

4.1.1 The Statement o f theProblems..<53

4.1.2 Weighted Caching and k-Server Algorithms... 65

4.1.3 More Related Work..68

4 .2 R a n d o m W a l k A l g o r it h m s f o r S e r v e r P r o b l e m s .. 7 2

4.2.1 Random Walks and Electrical Networks.. 72

4.2.2 The Harmonic Algorithm fo r the k-Server Problem ...75

4.2.3 Resistive Spaces in the k-Server Problem ...80

4.2.4 Asymmetric 2-Server Problem ..81

4.2.5 Non-resistive Graphs and Server Problem ...83

4 .3 T h e D is t r ib u t e d k -S e r v e r P r o b l e m ... 87

Chapter 5: Combinatorial On-line Algorithms...89
5 .2 o n -l i n e g r a p h c o l o r in g ... 8 9

5. 1.1 On-line Problem Statement and Related Terminology.. 89

5. 1.2 On-line Interval Graph Coloring..91

5.1.3 On-line Coloring on Special G raphs ..93

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1.4 On-line Coloring on H ypergraphs ... 96

5.1.5 On-line Coloring on General G ra p h s ..97

5 .2 O n - l in e G r a p h M a t c h i n g .. 103

5.2.1 Off-line Problem Statement and Algorithm s...103

5.2.2 Duality Analysis o f Weighted Matching Algorithms..105

5.2.3 On-line Unweighted Matching Algorithms.. 106

5.2.4 On-line Assignment A lgorithm s ..108

5.2.5 On-line Maximum Matching...I l l

5 .3 S p e c if ic C o m b in a t o r ia l O n - l in e P r o b l e m s .. 115

5.3.1 On-line String Matching..115

5.3.2 On-line Network F low ...116

5.3.3 On-line Scheduling. . 116

Chapter 6: On-line Algorithms in Computational G eom etry....................................... 119
6 .1 INTRODI C T IO N ..119

6 .2 O n -l in e N a v ig a t io n in a n U n k n o w n H n v i r o n m e n t .. 121

6.2.1 Problem Motivation and Related Results...121

6.2.2 On-line Visual Searching in Unknown S treets ... 125

6 .3 O n -l in e G e o m e t r ic R o i .t i n u e o r P l a n a r G r a p h s ...131

6.3 1 On-line Traveling Salesperson Problem .. 131

6 3 2 On-line Geometric k-CPP fo r Phir.'r G raphs.. 134

Chapter 7: Conclusions and Future Directions... 139
7.1 A C r it iq u e o f C o m p e t it iv e A n a l y s is ...139

7.1.2 New On-line M odels...140

7 .3 F u t u r e W o r k ..141

7.3.1 Lookahead .. 141

73.2 On-line Learning Versus Off-line Learning ..142

7.3.3 Central Open Problems.. 142

7 .4 T h e s is S u m m a r y .. 143

A Bibliography of On-line Algorithms...145

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

F ig u r e 2 . l : T h e A b s t r a c t P r o b l e m O f I n c r e m e n t a l C o m p u t a t io n ..11

F ig u r e 2 .2 ; A n A m o r t iz e d A n a l y s is T o g e t h e r W it h C o m p e t it iv e A n a l y s is ... 2 0

F ig u r e 2 .3 ; E f f e c t iv e A l g o r it h m A F o r U p d a t in g A n In it ia l S o l u t i o n ..2 6

F ig u r e 3 .1 : F r e q u e n c y C o u n t E x a m p l e ..39

F ig u r e 3 .2 : L is t U p d a t e H e u r i s t i c s ..39

F ig u r e 3 .3 ; A R a n d o m iz e d MTF A l g o r it h m F o r LUP.. 4 2

F ig u r e 3 .4 : A G e n e r a l iz e d R a n d o m iz e d M T F A l g o r it h m F o r LUP ..4 3

F ig u r e 3 .5 : A R a n d o m iz e d A l g o r it h m F o r LUP T o H a n d l e S i c c e s s f u l A n d U n s u c c e s s f u l

S e a r c h e s A s W e l l A s I n s e r t i o n s ..4 4

F i g u r e 3 .6 : A D e t e r m i n i s t i c O n - L in e A l g o r i t h m F o r LUP W i t h R e t r ie v a l S e t s ... 4 6

F ig u r e 3 .7 : A l g o r it h m BITS F o r WLUP W it h R e t r ie v a l S e t s ... 4 6

F ig u r e 3 .8 : A R a n d o m iz e d P a g in g A l g o r it h m W it h A W e a k L o o k a h e a d ..53

F ig u r e 3 .9 : A R a n d o m iz e d P a g e M ig r a t io n A l g o r it h m F o r A n y M e t r ic S p a c e O f T w o P o i n t s 5 6

F ig u r e 3 .1 0 : A R a n d o m iz e d P a g e R e p l ic a t io n A l g o r it h m F o r T r e e s A n d U n if o r m N e t w o r k s 5 8

F ig u r e 3 .1 1 : A C e n t r a l iz e d M ig r a t io n A l g o r it h m O n A r b it r a r y N e t w o r k s .. 5 9

F ig u r e 4 ,1 : T h e A l g o r it h m B a l a n c e (BAL) f o r k -S e r v f .r P r o b l e m .. 6 5

F ig u r e 4 .2 : T h e GREEDYDUAL A l g o r it h m f o r W e ig h t e d C a c h in g P r o b l e m ..6 6

F i g u r e 4 .3 : A k -S e r v e r A l g o r it h m f o r a R e a l L in e ...7 0

F ig u r e 4 .4 : H a r m o n ic A l g o r it h m f o r k -S e r v e r P r o b l e m ..7 6

F ig u r e 5 .1 : O n - l in e G r a p h C o l o r in g A l g o r it h m FF(G)...91

F ig u r e 5 .2 ; i) In t e r v a l r e p r e s e n t a t io n i i) I n t e r v a l g r a p h .. 9 2

F ig u r e 5 .3 : O n - l in e I n t e r v a l C o l o r i n g ...9 2

F i g u r e 5 .4 : V i s h w a r a t h a n ' s R a n d o m i z e d O n - l i n e C o l o r i n g A l g o r i t h m ...9 9

F ig u r e 5 .5 : a n a p p r o x im a t e o f f -l in e c o l o r in g a l g o r it h m ...100

F ig u r e 5 .6 : a p a r a l l e l m a x im a l p a r t ia l c o l o r in g a l g o r i t h m ..101

F ig u r e 5 .7 : h a l d 6 r s s o n ’s r a n d o m iz e d o n -l in e c o l o r in g a l g o r i t h m ..101

F ig u r e 5 .8 : a m a x im u m - w e ig h t o f f -l in e m a t c h in g a l g o r i t h m ..105

F ig u r e 5 .9 : o n -l i n e d e t e r m in is t ic b ip a r t it e m a t c h in g a l g o r i t h m ..107

F ig u r e 5 .1 0 : r a n k in g a l g o r i t h m ..107

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

F ig u r e 5 .1 1 : k a r p ’s r a n d o m iz e d b ip a r t it e o n -l in e m a t c h in g a l g o r it h m .. 108

F ig u r e 5 .1 2 . a d e t e r m in is t ic pe r m i t a t io n a l g o r it h m eo r m in - m a t c h in g p r o b l e m109

F ig u r e 5 .1 3 : a n o n -l in e m in im u m m a t c h in g a l g o r it h m w it h n p o in t s e u c l id e a n s p a c e 110

F i g u r e 5 .1 4 : a d e t e r m in is t ic o n -l in e a s s ig n m e n t a l g o r i l h m ...110

F ig u r e 5 .1 5 : a r a n d o m iz e d p e r m u t a t io n a l g o r it h m .. I l l

F ig u r e 5 .16 : a d e t e r m in is t ic o n -l in e m a x - m a t c h in g a l g o r it h m f o r m e t r ic , b ip a r t it e g r a p h s I l l

F ig u r e 5 .1 7 : a n o n - l in e m a x im u m w e ig h t e d m a t c h in g o n g e n e r a l g r a p h s ... 113

F ig u r e 5 .1 8 : a n o n -l in e m a x im u m u n w e ig h t e d m a t c h in g o n g e n e r a l g r a p h s ..114

F ig u r e 6 .1 : a -v/ 3 -c o m p e t it iv e o n -l in e s t r a t e g y f o r a s t r e e t .. 127

F ig u r e 6 .2 : r o b o t m o v e m e n t c a s e s .. 128

F ig u r e 6 .3 : v i s u a l s e a r c h i n g s t r e e t s w i th f o v r a n d f iv e v e r t i c e s ... 131

F ig u r e 6 .4 : a m o d if ie d o n -l in e .a l g o r it h m f o r t h e v is u a l 1-t s p 133

F ig u r e 6 .5 . a n a l g o r it h m t o f in d t h e a r t if ic ia l toi rs o f a p l a n a r g r a p h ... 136

F i g u r e 6 .6 : a n o n - l i n e v i s u a l k - c p p a l g o r i t h m .. 136

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

T a b l e 3 .1: R a n d o m iz e d p a g e m ig r a t io n a l g o r it h m s a n d t h e ir c o m p e t it iv e r a t io s 57

T a b l e 3 .2 : d e t e r m in is t ic p a g e r e p l ic a t io n a l g o r it h m s a n d t h e ir p e r f o r m a n c e s5 9

T a b l e 3 .3 : R a n d o m iz e d p a g e r e p l ic a t io n a l g o r it h m s a n d t h e ir C o m p e t it iv e r a t io s5 9

T a b l e 4 .1 : d e t e r m in is t ic o n -l in e a l g o r it h m s t o r k -s e r v e r p r o b l e m ...71

T a b l e 4 .2 : r a n d o m iz e d o n -l in e a l g o r it h m s f o r k -s e r v e r p r o b l e m ... 71

T a b l e 5 .1 : p e r f o r m a n c e r a t io s o f o n -l in e A L G O R IT H M S f o r g r a p h s ...102

T a b l e 5 .2 : o n -l in e s c h e d u l in g a l g o r it h m s o n p a r a l l e l m a c h in e s a n d t h e ir b o u n d s 117

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction
TA PAATA

Everything Changes

H**A<uTUf

The subject of this research is on-line computation with dynamic or changing input

data.

1.1 Dynamic Algorithms and Data Structures
The development of dynamic algorithms and data structures is a fruitful and

challenging area that has achieved a great deal of attention in last years. Dynamic

computation involves updating the solution to a problem when the input changes

incrementally. This has generated many new algorithms and data structures for solving

dynamic problems efficiently. Dynamic algorithms have been considered where a

sequence of update and query operations are performed over time and each operation has

to be completed before beginning the next

The objective of an efficient dynamic algorithm is to obtain considerable savings

over recalculating the solution from scratch. There has been a lot of research especially in

the field of graph algorithms motivated by many important applications in network

optimization, VLSI layout, distributed computing and computational geometry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 2

1.2 On-line Algorithms
The study of dynamic algorithms is relatively new and hence there is no standard

definition in what are known as dynamic, incremental, update, or on-line algorithms. All

above terms refer to algorithms in which a solution is maintained or modified as a result of

an incremental change of the input data. Researchers have used variant definitions which

were internally restrictive, mostly considering only “atomic” changes, not sequences. In

particular, some algorithms were analyzed for numerous updates, while others allowed

only one “atomic” change.

In this research, we attempt to carefully define the exact meaning of “incrementar

and “on-line” algorithms. These definitions are based on those in [52,187] and [255,207],

respectively. We hope that the presented categorization will be a useful start at

understanding its modification in many problems. Our effort has been focused on efficient

on-line algorithms, where partial information of the input data is assumed. We leave the

more general study of fully incremental computation for future work.

There are several important reasons for studying and searching on-line algorithms:

• On-line computation corresponds naturally to the real life situation, where the future is

unknown.

• On-line algorithms nicely complement many well-studied frameworks of the algorithmic

theory (i.e., the dynamic and highly recursive computation).

• The analysis of on-line algorithms forms an elegant model for measuring the

performance of algorithms with partial or incomplete access to the input data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 3

• The theory of on-line algorithms leads towards further research for a unified measure

of complexity theory.

1 3 On-line Problems and Applications
A computational problem is said to be on-line if it is required to make irrevocable

decisions about the output without complete information of the entire input. On-line

algorithms attempt to model a real life situation, where the entire input is not known in

advance and it is obtained incrementally.

Many problems in computer science are inherently on-line in nature and therefore

there have been a lot of on-line applications in relevant fields. Indeed, several advanced

computer applications arise such as real-time manufacturing systems, man-machine

interfaces, robot navigation and computer graphics. Typical applications of on-line

algorithms include resource allocation in parallel and distributed computer systems, the

stock market, bin packing, cache management, file migration, scheduling, routing,

maintenance o f data structures and databases, communication networks and so on. In all

these areas and especially for on-line solutions of combinatorial problems, interestingly

beautiful mathematical arguments have yielded lower and upper bounds on their

complexity.

1.4 Analysis of On-line Algorithms
A fundamental problem of interest in computer science is the analysis of algorithms

with the intention of designing an efficient solution of a computational problem. We are

interested in making good decisions in on-line computation and find an efficient solution

based on the fact that each part of the solution is obtained without a priori knowledge of

the entire input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 4

One usual and standard way of solving on-line problems is to re-compute their

solution from scratch after each input change (the off-line approach). Unfortunately, this is

often computationally expensive.

There are more efficient and general approaches (called incremental approaches)

to maintain some information between subsequent updates so as to react quickly in

response to input changes. Many new algorithms and data structures for solving

efficiently dynamic graph problems have been generated. Also, some efforts to analyze

the concept of incremental computation from a theoretical complexity point of view have

been developed [187].

In order to analyze the performance of on-line algorithms, some formal theoretical

model is necessary. Traditional worst-case complexity usually fails here, since any

algorithm will have an input that gives arbitrarily poor performance for many on-line

problems. For example. List Update [173,312] and Paging problems [141,312]1 can be

used to illustrate the shortcomings of the worst-case analysis for measuring the quality

(efficiency) of on-line algorithms.

Previous work on on-line algorithms focuses on analyzing the performance of

algorithms where the input is generated according to some fixed distribution [144,307].

Most of this work is concerned with analyzing data structures [57,187] and paging

algorithms [141]. Thus, the “quality” of an algorithm is measured by its running time for

a fixed distribution which depends on the chosen distribution. This is a useful model for

studying specific algorithms, but we cannot use it in the designing and analysing an on-line

strategy for the following two reasons:

• Information about the specific input distribution may not be available in advance.

1 We will also study them in chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 5

• We desire to design robust algorithms for which the performance measure does not

depend on a particular input distribution.

The problem of evaluating the measure of an on-line algorithm was addressed by

Sleator and Tarjan [312]. They argued that the traditional approach of measuring the

worst-case behavior does not seem appropriate for many on-line algorithms. Therefore,

they suggested a different theoretical model to evaluate the performance of an on-line

algorithm with respect to the optimal off-line algorithm that knows the entire request

sequence in advance. The maximum ratio between their respective performances, taken

over all request sequences, is called competitive ratio (factor) or competitiveness. This

competitive method of analysis is named competitive analysis by Karlin et al. [204].

1.5 Thesis Outline

This thesis studies the design and analysis o f efficient algorithms fo r on-line

algorithms. We examine the following fundamental questions:

• How well can an on-line algorithm perform?

• how can we design efficient, algorithms that make optimal use of the available

information?

The general and interesting problem of whether off-line algorithms can be

significantly better (faster) than on-line algorithms arises. Previous efforts to resolve this

problem concentrated on amortized time [325] and to a lesser extent space. There are two

reasons for considering this general problem:

• Some situations are off-line ones and we would like to bound the penalty we pay for

using on-line algorithms in off-line settings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 6

• By comparing on-line algorithms to optimal off-line ones, we can indirectly compare

on-line algorithms within a constant factor (i.e., the competitive ratio).

We discuss some of the areas in which on-line algorithms have been studied and

we present techniques for proving upper and lower bounds on the competitive factors

achievable by them in a variety of on-line problems.

The goal of this research is to study some of the areas in which on-line algorithms

may apply and design algorithms that are competitively more efficient than the already

existing ones under a variety of on-line settings.

The major contributions of this thesis are as follows:

• Provide general lower complexity bounds for the on-line algorithms on restricted inputs

of some practical problems. Th se results are often pessimistic, since in practice the

input to a problem is not arbitrary.

• Extend the k-server problem for non-resistive graphs against a lazy adversary. In

addition, we show that the strong competitive factor of the harmonic algorithm for the

2-server problem against a lazy adversary is in the interval (1,31 instead of the interval

range [3,6] (See [285], Theorem 8). We also extend this result for the k-server

problem.

• Give a slightly tighter competitive ratio for on-line coloring algorithm First-Fit on d-

inductive graphs with strong lookahead I.

• Apply the dual bounding technique to simply reanalyze on-line matching algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 7

• Propose a deterministic V3 -competitive navigation algorithm for searching in

unknown simple polygons (called streets) and show that no randomized algorithm can

achieve a better competitive ratio than ln5 for a visual searching in unknown streets,

generally.

In the remainder of this chapter we present an overview of the thesis' organization

and discuss the above results in further details.

In C h a p te r 2 we introduce the terminology and notations used in this thesis. In

particular, we give some fundamental definitions for incremental and on-line algorithms

and derive lower complexity bounds for on-line strategies under some plausible

restrictions.

Chapter 3 considers several general variations of the standard on-line models and

some shortcomings of the worst-case analysis to measure the efficiency of on-line

algorithms. We study the list update and paging problems in which the theory of on-line

algorithms has been applied. We also deal with the competitive analysis of algorithms for

managing data in a distributed environment.

Chapter 4 extends the theory of random walks on resistive graphs to non-resistive

spaces. We develop methods for the synthesis of such random walks and we employ them

to design randomized competitive on-line algorithms for k-server problems. Additionally,

we consider the k-server problem in a more realistic distributed setting, where the

transmission of information (messages) to the servers is costly.

Chapter 5 examines some classical combinatorial optimization problems in

computer science in on-line fashion: the on-line graph coloring and matching.

Furthermore, we apply the dual bounding technique, which is a general method for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction 8

competitive analysis by using the duality of linear programming (DLP) to obtain bounds

on the optimal cost, in order to simply reanalyze several on-line matching strategies and

show its general applicability.

Chapter 6 deals with the on-line algorithms and applications in Computational

Geometry. Particularly, we propose an on-line navigation strategy in an unknown simple

polygon (i.e., a street), which achieves the best competitive ratio of V3 known in the

literature. Moreover, some geometric (or visual) routing problems have been developed

for planar graphs under a specific on-line model, the so called fixed graph scenario.

Chapter 7 concludes the thesis with several final remarks, points out a few

directions for future research and summarizes our results.

The Universe loves nothing so much

as to change the things which are

and to make new things like them.

Marcus Aurelius

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Theory and Complexity of On-line
Algorithms

J O ♦l/VAl 4 0 M T Ofi
The Future is Unknown

foLOfi

But how much o f the future is worth knowing?
R Graham

ACM-SIAM Symposium on Algorithms, 1991

In this chapter we introduce the terminology and new variations on the standard

model of competitive analysis for on-line algorithms used in this thesis. Particularly, we

discuss the difficulties involved in analyzing the computational complexity of on-line

algorithms. We also present new theoretic approaches to derive lower complexity bounds

and models for on-line algorithms under some plausible restrictions.

Throughout this thesis, standard theoretical terminology has been used as

contained in the algorithms and data structures’ references [3,64,100,171,244,258]; e.g.,

classical definitions on graphs, asymptotic growth notations, computational models, and

so on. Sometimes, we restate some definitions and results if needed for our purposes.

2.1 Theory of Dynamic and On-line Algorithms
Classical theory of algorithms deals with computational problems in which an

algorithm is assumed to have a complete knowledge of the input data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 10

Definition 2.1: A batch algorithm takes an input and computes an output that is some

function of the input. Such algorithms are also called off-line or hindsight algorithms in

the literature.

This setting is not realistic in some algorithms, because sometimes only partial

information about data is available, and the algorithm is supposed to compute, or at least

approximate, the desired function based on this partial information.

2.1.1 Incremental Algorithms
In contrast to batch algorithms, an incremental computation is concerned with

updating the output as the input arrives. Let f: I - * 0 be a function (problem) with domain

/ being the set of problem instances or inputs, and range O the set of answers or outputs.

Each I € / and a e O is itself a set, with III = I the length of the problem instance. Given a

problem instance I, let a = f(I); in this case, we say that algorithm A implements f . The

number of steps required by algorithm A to compute f{\), in the worst case, is the

complexity time of A , denoted by Ta(1).

Definition 2.2: An incremental algorithm A A for computing the function / takes as input

the “batch input” I, the “batch output” f(l), possibly some auxiliary information, and a

description of the “change in the batch input", AI. The algorithm computes the “new

batch o u tp u t'jfl + AI), where I + AI denotes the modified input, and updates the auxiliary

information as necessary (see Figure 2.1). What we refer to as incremental algorithms

have been called dynamic algorithms, on-line update (or simply update) algorithms and

on-line maintenance algorithms in the literature. These definitions are based on those in

[52,187].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 11

A batch algorithm for computing a (problem) function / can obviously be used in

this situation. It is called a start-over algorithm in this context (i.e., it starts from scratch).

A standard, start-over algorithm can be viewed as an off-line algorithm. For example,

Heapsort [3,175] is an off-line algorithm.

Output: f(l)A batch algorithm for
computing f

Input: I

Auxiliary Information

An incremental algorithm
for computing f

Modified Input:
I + Al

Modified Output:
fd + ad

Modified Auxiliary Information

Figure 2.1: The above picture depicts the abstract problem of incremental computation. The
shaded regions denote the input and the output The dotted lines around the auxiliary
information signify that it is optional information maintained by the algorithm and it may
vary for each incremental algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 12

There are some problems that can be solved by standard algorithms, but the goal is

to find an incremental algorithm with better worst-case complexity than the start-over

algorithm. An example of this approach includes Frederickson’s algorithm [147] for

updating minimum spanning trees.

Incremental algorithms, which are faster than the start-over algorithm for single

change in the worst case, have been relatively few. For example, the Incremental Relative

Lower Bound (IRLB) method [52] classify some incremental problems from this point of

view. This method is based on a sequence of deletions only (not additions) and gives

lower bounds for the incremental algorithms in terms of that for the batch strategies. This

approach seems to b? more of a theoretical issue than a practical one.

In the typical incremental problem, the applied incremental changes are categorized

as additions and deletions. If only insertions or deletions are permitted, then an

incremental algorithm is called semi- or partially-dynamic, and if both insertions and

deletions are allowed, it is called fully-dynamic. For example, Tarjan’s “union-find”

algorithm [329] can be viewed as a partially-dynamic incremental algorithm for the

problem of connected components. On the other hand, Fredrickson’s algorithm for

updating minimum spanning trees [147] is an example of a fully-dynamic algorithm. Also,

Italiano [187] considers a fully-dynamic algorithm for updating 2-edge connectivity. In

some cases, algorithms may handle both types of change, but the analysis may apply only

to a sequence of one type of change (e.g., see [346]). Typically, although not always, on

line algorithms are partially-dynamic; e.g., any list maintenance strategy is a notable

exception (e.*. . see [173,312]).

Research for such dynamic or incremental algorithms has been focused on the

following areas:

• Graph theoretic algorithms;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter? Theory and Complexity of On-line Algorithms 13

— Connectivity [79,132],

— Spanning trees and forests U 19,147,149,160,319],

— Shortest paths [17,18,80,187],

— Biconnected and triconnected components [119,187,289,3401,

— Transitive closure or reachability [185,1861,

— Planarity testing [118,128,129,130,321,3221;

• Computational Geometry [266,271,2811;

• Data bases [1];

• Syntax-directed editors and grammars [293,294,295,298];

• Data-flow analysis [13,53,298]; and

• Code generation and optimization [187].

There have been parallel incremental algorithms for minimum spanning trees and

connected components [275]. Also, a beautiful research on dynamic data structures and

algorithms for graphs can be found in [93,187].

2.1.2 On-line Algorithms versus OfF-line Algorithms

An on-line algorithm is one that receives a sequence of requests, and performs an

irrevocable answer (action) in response to each request before the next request arrives.

Each sequence of requests and corresponding actions have an associated cost.

Aho, Hopcroft and Ullman ([3], pp. 109) define on-line execution, for an input

sequence r, as follows:

Definition. The on-line execution of r requires that the instructions in r be

executed from left to right, executing the ith instruction in r without

looking at any following instructions. The off-line execution of r permits

all the r to be scanned before answers need to be produced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 14

The above definition is given in terms of a sequence of "instructions”. There is no

fundamental difference between instructions and requests or any other kind of input data.

The description of the input as a sequence of instructions (requests) is typical for an on

line problem.

There is also no difference between “on-line update” and “on-line algorithms”. It is

a matter of the questions that we choose to ask. On-line algorithms usually refer to a

sequence of operations (requests), rather than a solution that needs tr be updated.

On-line (resp., off-line) algorithms are often associated with a particular on-line

(off-line, respectively) data structure and its corresponding timing [308,309]. Generally,

we are interested in a sequence of operations for on-line algorithms, rather than a single

update. With these notions in mind, we define the on-line setting more rigorously in order

to study the design and analysis of the efficient on-line algorithms.

An on-line algorithm is specified by:

• A set R of requests (inputs or problem instances)',

• A set A of actions (answers or outputs)',

• A cost function C: UR* —» R + , where R + denotes the set of non-
/■ i

negative real numbers.

For any request r e , define Opt{r) as minieA, C(r, a). An on-line algorithm

A is determined by function / : R+ - » A , where the domain is the set of all finite non-

empty sequences of requests. In response to a sequence r = n , r2,..., r(the algorithm

performs the sequence of actions A (r) = / (r,), / (r,, r2) , . . . , / (r,, r2 r,) and incurs

the cost C(r, A(r)). In the above definition, we note that an on-line algorithm is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 15

deterministic. In section 2.2.4, we will extend the definition to randomized on-line

algorithms.

On-line algorithms may be contrasted with off-line algorithms, which can use the

entire sequence of requests in advance and take an action in response to each request. In

other words, an off-line algorithm knows the future, but an on-line does not. On-line

algorithms must make decisions based only on past history, which is a more realistic

situation in the teal world. For example, in the context of a database system each request

may be a query or an update, and the corresponding action involves retrieving data from

and possibly modifying the database. In an investment situation, a request might consist of

a price quotation for a commodity and the action might be to buy or sell some amount of

the commodity. It is clear that, in some on-line settings, partial information about the

future is a great disadvantage (for example, think of the above situation as the stock

market).

Here, the important computational problem of measuring the performance of an

on-line algorithm arises. In computer science, we ask the following fundamental questions

for an on-line problem:

• How well can an on-line algorithm perform?

• How can we design an algorithm that makes optimal decisions based only on the

available partial knowledge of the future?

In order to study these questions, a formal theoretical framework for the

performance quality of an on-line algorithm is needed. The analysis of a performance

measure of on-line algorithms is more difficult than that in off-line settings, since usually,

whatever action an on-line algorithm takes in response to an initial sequence of requests,

there will be a sequence of further requests that makes the algorithm look inefficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 16

2.2 On-line Models and Complexity Analysis
We consider the development of competitive analysis among amortized analysis.

We also take into account the results that distinguish the different types of randomized

adversaries which comprise the present theoretical models of on-line algorithms.

2.2.1 Competitive Analysis
Competitive Analysis provides a technique to develop a meaningful worst-case

analysis of on-line algorithms without making assumptions about the distribution of the

input.

There are many on-line problems for which the traditional worst-case performance

of an on-line algorithm gives wrong results about the quality of the algorithm. We use List

Update Problem [50,51,173,312] to get a poor performance of the worst-case analysis. A

common lower-bound tec.inique is to pretend that an algorithm plays against an adversary.

The adversary observes the behavior of the algorithm and accordingly chooses a bad input

to fail an on-line algorithm. An adversary who plays against a deterministic algorithm for

List Update can always choose to access the last item in the algorithm's list Thus, any

deterministic on-line algorithm can be forced to pay the maximum amount ffor every

access.

There has been an extensive work cn list update problem where the input consists

of a sequence of accesses. For each access in the sequence, the item to be accessed is

independently chosen according to a fixed distribution over the items

[50,57,225,296,312]. Several early studies of the paging [141,144,261,307] and dynamic

structures [57,187] assumed a specific stochastic model of the source of requests. Within

such a model, an on-line algorithm may be considered optimal if it chooses its actions so

as to minimize the expected cost, where the cost depends on the sequence of requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 17

generated by the stochastic source on the sequence of actions chosen by the algorithm in

response to these requests. However, the choice of a stochastic model does not always

design efficient on-line algorithms, because it requires data that may not be readily

available in advance.

An alternative to stochastic models is competitive analysis which evaluates an on

line algorithm in comparison to the optimal off-line algorithm processing the same

sequence of requests. This worst-case approach was first presented by Sleator and Tarjan

in analyzing algorithms for List Update [312].

Definition 2.3: For a positive constant d, the on-line algorithm A is said to be d-

competitive if there exists a constant (3 such that, for all request sequence r, we have

C(r, A (r)) < d-Opt{r) + p.

where Opt{r) and C(r, A (r)) are the costs for servicing the input r that are charged to the

optimal off-line and on-line algorithms, respect5vely. The competitive ratio (or factor) of

A is defined as the infimum (i.e., greatest lower bound) of the set c such that A is c-

competitive.

Some authors use a variant of these definitions, in which p is required to be zero.

Since we are comparing an on-line algorithm to the optimal off-line one, we are focusing

on what is lost in processing the information in on-line manner. Some sequences are

inherently difficult', that is, sequences which would access many different items in turn

(e.g.. List Update Problem [173,312]). An on-line algorithm is not expected to perform

efficiently on such sequences, because even the optimal off-line algorithm has a high cost

on these requests.

The concept of competitive ratio is related to the minmax regret concept in Game

Theory [9,95,111,150,268], and we shall often view the situation as a game between an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 18

on-line player who selects the on-line algorithm and an adversary who chooses the

request sequence, in order to maximize the ratio between the algorithm's cost and that of

an optimal off-line algorithm.

Competitive analysis was developed around the same time as Amortized analysis

[100,325]. Both techniques are often used in conjunction, although the use of one does

not necessarily imply the use of the other. In the following subsection we shall illustrate

the concept of an on-line algorithm and its competitive analysis.

2.2.2 Rental Ski Problem
An on-line algorithm will be designed for the rental ski (or equipment rental)

problem , which has been introduced by L Rudolph [207], to illustrate the concept of the

competitive ratio.

Supposing we were to decide to try the sport of skiing. Because we don't know

how many ski trips we will take, we cannot decide whether to rent a pair each time or to

buy a new pair of skis. If we bought skis at the beginning and then decided we did not like

the sport after a couple of runs, renting would have been cheaper. On the other hand, if we

were always renting and were to like the sport enough to ski many times, the right option

would have been to buy the skis in the beginning.

An answer to the ski situation is to rent skis until the cumulative cost of renting

fust exceeds the cost of buying a new pair, and then to purchase a pair at that point.

Suppose the cost of renting a pair of skis for a ski trip is 1, and the cost of buying a pair of

skis is s. Here, there is only one possible request (“take a ski trip”) and three possible

actions (“rent", “buy", and “use skis already bought"), with cost 1, t and 0 units,

respectively, where the third action can be invoked only if the second action has occurred

previously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 19

A moment’s reflection shows that with this strategy, our net cost never exceeds

twice the minimum possible cost up to the point when we stop skiing, no matter when we

stop skiing. Questions such as this come up in the study of on-line algorithms. In the ski

rental problem, it is clear that any possible on-line algorithm is of the form “rent for the

first k trips, then buy, then use the skis already bought” . On a sequence r of t requests, the

„ . f t , if t S k
cost increases by the on-line algorithm A (r) is C(r, A (r)) = <,

fk + s , otherwise

and the cost incurred by an optimal off-line algorithm is Optir) = minis, t).

The objective is to choose the parameter k to minimize the competitive ratio. In

other words, we want the adversary to continue the ski trips until the on-line algorithm

buys a pair of skis, and then stop. The on-line algorithm's cost on such a request sequence

is k + s, while the optimal off-line cost is mw(k+l, s). Therefore, the competitive ratio is

k + s
p (r,A (r)) = ---------------- . Assuming that s is an integer, the competitive ratio is

min(k + l,s)

2 s-l
minimized by setting k = s - I. thus achieving a competitive ratio of ------- .

s

2.23 Amortized Analysis
Amortized Analysis or more specifically a potential function analysis (see

[100,325]) is a useful tool that is used in analyzing the running time of an algorithm that

performs a sequence of operations. Usually, such an analysis is in contrast with a worst-

case analysis, which bounds the cost of the sequence by summing the worst-case costs of

the individual operations. The idea was initially developed for use in analyzing data

structures, although it has been useful in many other on-line contexts (e.g.. Task Systems

[66], Server Systems [251,254]; see also chapter 3).

The framework consists of a system and a set of operations. Typically, we are

mainly concerned with the amount of time required to perform the whole sequence of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 20

operations instead of a single operation. Using the worst-case analysis, the cost per

operation yields overly pessimistic results on the time to perform the entire sequence of

operations (e.g., consider increment operations on a k-bit counter [100]). The goal of

amortized analysis is to analyze the worst-case over sequences of the average cost per

operation [325]. Examples of this type include amortized analysis of balanced search

trees, the union-find data structure, and splay trees ([94,147,247,304,325,326]).

A stronger type of result for data structures uses amortized analysis together with

competitive analysis to bound the amortized cost of an operation with respect to an

optimal off-line algorithm. A typical competitive analysis with a potential function is of the

following form:

Competitive Analysis with a Potential Function

Given an on-line algorithm A producing a solution in response to r = ri, *2. • •• n:
1. Define a potential O which is a function of the states of A and Opt.
2. Show that, in response to each request

a x S b-Ci+ O, - 0 ,1 ,
where a > 0, x, and c, are the costs incurred by A and O pt, respectively, in
response to the *th request, and O. is the value of the potential function after A
and OPT have responded.

3. Sum the inequalities, showing that the cost incurred by A is bounded by
(b-opt + O/ - O 0) / a

where “opt” is OPT’s cost.
4. Show that Q? - O0 is appropriately bounded.__________________________________

Figure 22: An Amortized Analysis together with Competitive Analysis,

A potential function is defined to represent the “distance" of the on-line

algorithm’s configuration to the optimal off-line algorithm’s configuration; its name stems

from a natural interpretation of the physical system [100,325].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 21

We may think of a potential function analysis as transforming OPT’s costs: In

response to the ith request. O p t s cost is changed to c ' = c, + (<!>,) / b . The analysis

then shows that OPT’s overall cost is not substantially increased under the transformation,

and gives a worst-case (per operation) bound on the transformed costs. That is,

b c'> a x, is shown for each i.

In section 3.2, we consider List Update to illustrate the use of amortized analysis

in conjunction with competitive analysis and show that the Move-to-Front (MTF)

algorithm for List Update Problem [173,312] is 2-competitive.

2.2.4 Randomization in the On*line Model
In playing against an arbitrary deterministic on-line algorithm A , adversary

constructions are the principal means of proving lower bou ics on the competitive ratio

achievable for a given problem. The constructions usually depend on the ability to simulate

A . Thus, we would expect consideration of randomized on-line algorithms, which toss

coins in the course of their execution, to improve the performance of on-line algorithms.

It seems that the unpredictability of such randomized algorithms should make it

more difficult for an adversary to construct bad sequences. The amount of information

available to the adversary will determine the strength of the adversary. We measure the

strength of a randomized on-line algorithm in terms of the strength of the adversary it

plays against and the competitiveness it achieves.

Ben-David et a i [47] introduce the most general framework for on-line algorithms,

request-answer games. We may view a randomized algorithm as playing a game against a

deterministic adversary. In each play of the game, the adversary chooses the request

sequence r = n , r(and its own sequence of actions b = bj, b2, bj, and the on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 22

line algorithm chooses the sequence of actions a = a(, a2 a*. We have the following

three types of adversaries in increasing order of power of randomized on-line algorithms:

• The Oblivious Adversary:

rt(bi)(ai)r2(b2)(a2)...;

that is, an oblivious adversary chooses a complete request sequence before the on-line

algorithm begins to process it. It is also called a weak adversary. An algorithm which is c-

competitive against such a weak adversary is called weakly c-competitive.

• The Adaptive On-line Adversary:

ri(bI)atr2(b2)a2...;

that is, an adaptive on-line adversary is allowed to watch the on-line in action, and

generate the next request based on all previous moves made by the on-line algorithm. This

adversary is also called a medium adversary. However, how to answer the present

sequence has to be decided without knowing how the algorithm answers the present and

future requests.

• The Adaptive Off-line or Strong Adversary:

riair2a2... r<a*btb2... b/;

that is, an adaptive off-line adversary may adapt the produced sequence of requests to the

random choices made to date by the on-line algorithm, and then pay for the entire

sequence optimally. However, it can wait to see the entire sequence before deciding how

to answer any request. An algorithm, where is c-competitive against such a strong

adversary, is called strongly c-competitive. Note that in the above notations, the left-to-

right sequence indicates the time sequence of the requests and actions, and parentheses

indicate actions that are kept secret.

Suppose an adversary plays against a randomized algorithm A and presents a

sequence r to the algorithm. Let C(r, a) denote the cost of the adversary’s answers to the

sequence r and let E[C(r, a)] be the expected cost of algorithm A on r. The randomized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 23

on-line algorithm is said to be c-competitive if, for every adversary and for a positive

constant c. we have

E[C(r, a) - c-C(r, b)] £ p,

where P is a constant independent of the length Irl = /.

All three adversary types have the same power against deterministic on-line

algorithms. Against randomized on-line algorithms, the adaptive off-line adversary type is

clearly the most powerful, and the oblivious adversary type is the least powerful. The

competitive ratio that is achieved depends on the adversary type considered (see

[47,141,261]).

Ben-David et al. [47] prove the following two very powerful theorems about the

relative strengths of these adversan js:

Theorem 2.1. I f there exists a randomized c-competitive algorithm against any adaptive

off-line adversary, then there also exists a deterministic c-competitive algorithm.

Theorem 2.2. I f there exist a c-competitive algorithm against oblivious adversaries and a

randomized d-competitive algorithm against adaptive on-line adversaries, then there is a

(c d)-competitive algorithm against any adaptive off-line adversary.

The two theorems together imply that if there exists a best randomized c-competitive

algorithm against an on-iine adversary, then there exists a deterministic c2-competitive

algorithm.

Unfortunately, Theorem 2.1 is not constructive generally. In [111], an infinite

request-answer game is shown such that there is a randomized 1-competitive strategy, but

there is no computable c-competitive strategy for any c > 1. Theorem 2.2 is important, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 24

it lets us show the existence of a deterministic competitive algorithms by constructing

randomized competitive algorithms. Irani and Karp show that Theorem 2.2 is tight for

request-answer games (see an example in [47]).

Finally, there is much greater difference between an oblivious adversary and an

adaptive adversary than that between adaptive on-line and off-line adversaries. This is best

illustrated in the Paging Problem [312]1. Similar work has been done on List Update

[173,312], although the results are less dramatic.

2 3 Complexity Bounds and Models for On-line Algorithms
In this section, we consider the issue of restricting the computational sources for

on-line algorithm. This is a practical idea which is addressed by Borodin et al. [65] and

underlines the philosophy behind Paging problem with locality o f reference. The goal is

to find an on-line algorithm that computes the new answer faster than an off-line

algorithm, when a small change in the input is given. We give relative lower bounds of an

on-line algorithm in terms of that for the off-line performance available. We also show that

no on-line algorithm can be better than / times the hypothetical optimal off-line algorithm,

where I is the length of the request sequence r.

23.1 Lower Complexity Bounds
Typically, an efficient on-line algorithm uses an additional amount of establishing

supplementary data structures and preprocessing cost that is required to produce a good

(efficient) initial solution. This amount is often referred to as preprocessing cost (time) of

the algorithm.

Generally, an on-line algorithm returns the tuple (a, T0), where a is the current

answer and T0 is any preprocessing time. The computational model used determines the

1 Also see chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 25

form of preprocessing cost. In a Random Access Machine (RAM) [3], T0 consists of the

complete context of memory and registers after each step of the algorithm. Clearly, T0

depends both upon the computational model and the particular algorithm being used;

while the answer a depends only upon the definition of the problem being solved.

Additionally, the preprocessing cost that is required to be an output does not necessarily

increase the cost by more than a constant factor, since the algorithm must already maintain

the state internally.

Proposition 2.1. Given any on-line or off-line algorithm A , problem instance I, answer a,

and preprocessing cost T0, we have that T^(/) = £2(lal + IT0I), where TA(l) is the time

complexity of the algorithm A .

Proof: Since A outputs a and T0, it has to write them to some memory device. Z

Definition 2.3. Let / : / —»O be a function (problem).

If (V/ € R^K BIq € I with IIqI = /) [a = /(Iq)] and a can be determined in time dominated

by Tf, then the function/for which such a procedure exists is said to be a good function or

a function with a good initialization value.

Clearly, a good initialization value problem can be found in complexity time 0(1 +

size of the output) by inspection for many functions. For example, the sorting by

comparisons, maximum and minimum problems have good initialization values. We see

that the existence of a good initialization value is a property of the function (problem) / ,

and not of any particular algorithm which implements it. Also, there is no direct relation

between preprocessing time and good initialization values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 26

Definition 2.5. An (on-line or off-line) algorithm A is said to be bounded if it implements

a function/ with a preprocessing time T0 such that IT0I £ 7).

Again, we see that the notion of preprocessing cost has only a relationship with the

algorithm that implements it. Particularly, an algorithm that has no preprocessing cost is a

special case of a bounded algorithm for some computational problems (e.g.. on-line

coloring partial graphs). We can use the above two definitions to limit the power of an

on-line algorithm, although all of the on-line algorithms are not restricted. Furthermore, if

an efficient on-line algorithm exists for a problem / , we can design an efficient off-line

algorithm by using the on-line algorithm repeatedly.

This would be developed by the following procedure:

1. Compute the output value for some initial dummy input.

2. Apply the on-line algorithm repeatedly and compute the real value for the

problem instance by changing the initial values, one-by-one, successively.

More formally, we get the following algorithm which is called an effective

algorithm:

0. I «- Iq ; {* Iq is an initial dummy input of length / = 11{, I. *}

1. a<-/a);
2. T «- T0(/); (* The initial preprocessing cost. *}
3. for i «- 1 to / do;

(a, To) <— Act (a, I, T, I<); {* A <» denotes an on-line algorithm. *}
14— I,; {* I is successfully modified to I„ where the Hamming distance

_________________________ II -1 ,1 « e, for each e > 0, under a suitable encoding. *}
Figure 23: Effective Algorithm A* for Updating an Initial Solution.

Theorem 2.3. A good function f can be implemented by both bounded off-line and on

line algorithms if and only i f Tf <1 TKm (I).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 27

Proof: Let 7^,(/) be the complexity time of the effective algorithm A ' for computing

/ (l '0) with I Iq I = / (see figure 2.3). S in c e /is a good function, the complexity time of

steps 0 and 1 is less than T). Also, the complexity time of step 2 is greater than that of step

1. The time complexity of steps 3 and 4 is /-(complexity of step 4) £ /• 7 ^ (0 , because

otherwise the effective algorithm A* for computing / would be better (faster) than the

optimal off-line algorithm; which is a contradiction. Thus, Tf <, I 7 ^ (/).

T rConversely, we assume that the theorem is not true; that is, T ^ (l) < - j - . Then the

complexity time of the effective algorithm A * is less than T/, which is a contradiction

again. Therefore, our theorem is true. □

Now, we consider the problem "sort by comparisons” to illustrate the above proof.

Sorting by comparisons has a good initialization value with time complexity O illog I) by

applying our effective algorithm. Clearly, this is a contradiction, because "sorting” cannot

be that fast (e.g., see [175], pp. 350-352). So the best bounded on-line algorithm cannot

be faster than O d log I).

23.2 Amortized Complexity Bounds
In some environments, an amortized performance of an on-line algorithm may be

better than its worst-case complexity time, even if some steps have a poor worst-case

performance. We apply Theorem 2.3 to the amortized case analysis and we have the

following result;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 28

Corollary 2.1. I f a good function f can be implemented by both bounded off-line and on-

T
line algorithms, then 7 ^ (/) $ —j - , where (I) denotes the time complexity per

operation required by an on-line algorithm A<,„ amortized over I operations.

Proof: By contradiction, using the same argument as in the proof of the Theorem 2.3. □

2 3 3 On-line NP-Completeness
We apply Theorem 2.3 to an NP-complete problem [156,209] and show the effect

this problem has on the complexity time of on-line algorithms.

Theorem 2.4. There is no bounded on-line algorithm with time complexity less than

Tk^AiiD/l for the k-SAT problem, which is an NP-complete fo r 3 <k<l .

Proof: Let us construct a good initialization value for k-SAT problem with / clauses such

that each clause contains k literals Xi, x2,..., x*. where x; = T (true value) for every 1£ i £

k. Clearly, the theorem is true by using Theorem 2.3. □

Additionally, we show that no NP-complete problem can have a polynomial time,

bounded on-line algorithm unless P = NP.

Corollary 2.2. I f there is a bounded on-line algorithm A on that implements any NP-

complete problem (function) f in polynomial time, then P = NP.

Proof: Suppose that there is such an on-line algorithm A ^ , then we can construct a

polynomial transformation to use it to update k-SAT instances, where 3< k £ /. By

Theorem 2.4, we get that the complexity time T (/) cannot be polynomially better*«•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 29

(faster) than T*.ski{1)/1. This implies that every NP-complete problem must be in P (i.e.,

NP c P) Therefore, P = NP. □

We would tike to note that a statement (without a p ro o f!) similar to Corollary 2.2

was made in [9,80] for incremental graph algorithms. Also, the above complexity results

for on-line algorithms can be easily extended to incremental algorithms as well.

We have seen that the lower bound of an on-line algorithm depends strictly upon

the function (problem) and not upon the implementation. The above Theorem 2.3 holds

for on-line algorithms that cannot be performed in time faster than that required for a good

initialization of the problem. It is an interesting open problem whether we can find any

function for which no good initialization exists to such on-line algorithms. It would also

be interesting to determine a set of necessary conditions for a good function (problem).

Generally, the techniques to derive lower bounds for an on-line problem in terms of that

for the off-line problem limit the preprocessing cost available and therefore it is a specific

problem, unfortunately.

2.3.4 On-line Complexity Models

Delcher and Kasif [264] proposed other notions o f completeness for on-line

algorithms, but they completely ignored the preprocessing issue. Although their results are

interesting, they are somewhat weak in that the issues of dynamic date structures and

preprocessing which are overlooked. They tried to overcome this drawback by showing

the following conjecture: the on-line versions o f all P-complete problems are P-complete.

R eif [290] presented another on-line complexity model to analyzing on-line algorithms

and sketched an interesting notion o f completeness. He showed that some problems are

umikely to have efficient on-line algorithms, but he did not develop a comprehensive

theory or consider the necessary details of preprocessing. He pointed o t that there exists

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 30

a number of problems for which it is difficult to develop an on-line algorithm with linear

time complexity. Some of such problems for which a deterministic on-line algorithm can

be designed in polynomial time with respect to sequential LOGSPACE Turing Machine

reductions include:

1. Acceptance o f a linear time Turing Machine;

2. Path system problems;

3. Boolean circuit evaluation;

4. Unit resolution, and

5. Depth-first search numbering o f a graph.

There exist linear time reductions in the sequential RAM model of computation for

all these problems. Also, they are constant-time updatable; that is, they can be reducible to

each other in constant time under a suitable encoding. This result implies that if a sublinear

on-line algorithm can be found for updating one of these problems, it can be applied to

update any of them.

Finally, Miltersen et al. [264] consider a new and more general complexity

approach to incremental computation. They defined some new complexity classes for

incremental algorithms and studied their relation to existing ones (e.g., sequential and NC

parallel classes). Particularly, they show that some problems exist that belong to the

incremental versions of P-complete problems (e.g., the comparator circuit-value problem

and the comparator network-stability problem) and prove that some important special

dynamic solutions imply parallel ones. It has also been shown that problems with

sequential space complexity have small incremental time complexity. According to the

authors, the classes incremental TIME and SPACE are very important for getting a better

understanding of the relationship between incremental and parallel computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Theory and Complexity of On-line Algorithms 31

In conclusion, we would like to point out that there exist many challenging open

problems in this area. The following are the most interesting for further research on the

complexity models for on-line or incremental computation:

• On-line or incremental versions of P-complete problems are P-complete problems.

• How is the incremental version of the class POLYLOGTIME related to the class

LOGS PACE ?

• What is the relation between the incremental version of the class POLYLOGTIME1 and

NC parallel class of problems which have optimal parallel algorithms?

When it is not necessary to change,

it is necessary not to change.

Lord Falkland

1 See [264] for the definitions and more details.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

On-line Models and Applications

The mathematician's patterns must be harmonious.

Beauty is the first step: there is no permanent

place in the world fo r ugly mathematics.

G. H. Hardy

A mathematician's apology.

This chapter first outlines t : me general theoretical models followed by

applications for the List Update and Paging on-line problems. Additionally, we present

some new results and simple extensions of the above problems for variant on-line models.

This study, along with Chapter 5, is intended to illustrate the importance of the field and

to provide a context for the work in this research.

3.1 On-line Theoretical Models
We introduce two general on-line theoretical models, the on-line Games and

Metrical Task Systems (MTS).

3.1.1 On-line Game Theory
Game theory is a mathematical discipline dealing with multiperson decision

problems, which is often called the theory o f conflict without or with cooperation between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 33

several parties. In a non-cooperative (resp., cooperative) game, the players are (resp., are

not) inclined to cooperate and to form coalitions A non-cooperative game which gives

rise to opposite claims is called a zero-sum game.

The history of game theory is generally accepted to start with John von

Neumann's article “Zur Theorie der Gesellschaftsspiele” (1928) 1128]. However, the

development of game theory gradually started to appear after the book “Theory of Games

and Economic Behavior" [269] was published and was inspired by economic problems

rather than problems from physics or other areas.

Games and game-like phenomena occur naturally in computations1 settings. There

are many applications of gante theory in computer science. For example, in distributed

computing and cryptography, researchers have tried to develop models that reflect the

competitive nature of distributed and cryptographic protocols.

It is believed that on-line games capture most of the on-line problems in which

competitive analysis is applicable. An interesting attempt is to describe on-line problems

in terms of games and develop general techniques of constructing competitive algorithms

[47,66,285]. Such results are still in progress [9,89].

An on-line game is a triple y = (Q, R,f), where

• Q is called a set of states.

• R is a set o f requests.

• f: Q x R x Q R is a cost function , where R is the set of real numbers. We also

assume that the sets Q, R are finite and the function / must satisfy certain topological

properties to ensure that some minima and maxima are actually achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 34

In [89], an interesting theory of on-line games and its relationship to the fixed

point theory for functional spaces has been developed, which is useful for the proofs of

some properties of on-line problems. It is not in our intention to restate it here. Instead,

we consider some on-line games and applications.

For example, let us first consider a simple bit-matching game: both the input and

output consist of one bit for each one and the cost is 1 if the output matches the input, 2 if

it does not. Clearly, any algorithm for the bit-matching game described above is 2-

competitive, with zero additive constant. Moreover, if P is an on-line problem which

consists of repeated plays of the bit-matching game, then P has an optimal competitiveness

of 2. This simple on-line game simply shows that it is impossible generally to compute the

optimal solution of an on-line optimization problem without the notion of competitiveness.

We now describe another simple two-person game which is at the core of many

other on-line algorithms and that is a special case of the server problem1 [255], Also,

some special cases of this game have been studied by Baeza- Yates et al. [34,35].

The cat-and-mouse or hide and seek a mouse game [285] is a game between
two players, one of whom we call the (blind) cat and the other the mouse.
The game proceeds in a series of rounds and is played on an undirected n-
vertex grap-. G whose edges have positive real costs in the form of a n x n cost
matrix C = (Cjj). The rth round begins with both players at the same vertex Ui
of the graph. The mouse then moves in a new vertex Ui+i * Ui, not known to
the cat, incurring a cost equal to the distance between the vertices for this
round. Each move of the mouse may depend on all previous walks of the cat.
The cat may use a memoryless2 randomized algorithm and choose its next
move probabilistically, as a function of its previous walks. The game stops
after a fixed number of rounds.

1 We will study it in chapter 4.
2 Each cat move depends only on the current position and not on the previous walks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 35

We will see in Chapter 4 that the competitiveness of any cat that uses a random

walk is at least n - 1 on any graph, no matter what transition probabilities the cat uses.

This result is true for resistive and non-resistive graphs (i.e., with and without symmetry

of the edge weights, respectively).

As we have already mentioned, on-line games arise in connection with the on-line

problems. Several on-line games have been referred to in the literature and some of them

are: tree game [86], on-line game G for LUP of length 2 [89], on-line (off-line)

continuous pebble games on graphs [120], on-line dynamic game [120], on-line infinite

games [111], layered graph traversal game [288] and the financial games for financial

decision making [127,357].

3.1.2 Task Systems and On-line Algorithms

In practice, almost all dynamic computer systems perform any given task in on-line

fashion, that is, without full knowledge for their future impact on the systems.

Borodin et al. [66] introduce a general model for a system on which a processing

sequence of tasks must be performed and develop a general on-line decision algorithm. A

number of on-line applications that are special cases of their model, include operations o f

dynamic data structures, paging, processor scheduling and server systems.

Specifically, a task system (S, d) for processing sequences of tasks consists of a set

S with |Sj = n states and a n x n cost matrix d = (d^) where the distance dM = d(i, j) is the

cost of moving from state i to state j. We assume that the distance matrix is non-negative,

has zero entries along the diagonal and satisfies the triangle inequality. The cost of

processing a given task depends on the state of the system. The input is a sequence T =

(Ti, T2 T„) of tasks where each task T* is the cost of performing the task in the ith state.

A schedule for a sequence T of tasks is a function 0 : {1,2.....n}->S, where 0 (i) is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 36

state in which the ith task is performed. The cost o f schedule 4> on task sequence T is the

sum of all state transition costs plus the sum of the task processing costs:

C(T; <D) = £ d (<D(i-l), O(i)) + £ T (O(i)).
i » i i » i

The objective is to minimize the cost of the schedule when the tasks are arriving in on-line

manner.

An (off-line) scheduling algorithm for a task system (S, d) is a function / that

associates to each task sequence T a schedule d> = / (T). It is easy to construct a dynamic

programming algorithm that gives an optimal (minimum cost Opt(T)) schedule for any

task sequence T. On the other hand, an on-line scheduling algorithm must determine in

which st'»te to perform a given task (S, d) without any knowledge of the future tasks (i.e.,

<D(i) depends only on Ti,T:.....,T.t). The cost o f algorithm A on sequence T, denoted by

CA(T), is defined to be C(T; a (T)).

We measure the efficiency of an on-line algorithm a as compared to the optimal

off-line algorithm and we say that algorithm a is c-competitive (or it has waste factor at

most c), if for any finite task sequence T, CA(T) - c-Opt (T) is bounded by a constant.

The waste factor W (a) of algorithm a is the infimum of all such c and the waste factor

W(S, d) of the task system is the infimum of W (a) over all on-line algorithms a .

Borodin et al. [66] give an optimal (2-|S|-l)-competitive algorithm for any

metrical task system (MTS) (i.e., a task system (S, d) in which the cost matrix d is

symmetric), and an O (|sj2)-competitive traversal algorithm for every task system.

However, for many useful special cases of task systems, 2-|S| -1 is a very weak bound and

there are on-line algorithms whose competitive ratio is independent of the number of

states.

www.manaraa.com

Chapter 3 On-line Models and Applications 37

Karlin et al. [204] show that there exists a randomized 2//„-competitive algorithm

with a lower bound of Hn (i.e., the nth harmonic number) for the snoopy caching problem

in the special case where the task system is uniform (i.e.,Vi*j, d(i, j) = 1). On the other

hand, the competitive upper bound for task systems does not give very strong results,

since the number of states in a system is often very large when it is applied to particular

special cases. For example, if we consider paging problem1 [255,312] with k slots in the

deterministic paging algorithm that has a competitive ratio of k exists.

In the following section, we shall consider some on-line computational problems

which are special cases of the task systems and for which we can design on-line algorithms

with competitive factors independent of the number of states in the system.

3.2 List Update Problem
We consider the List Update Problem (LUP) or sequential search problem

[51,173,256,292,296,312,330] which has been extensively studied in the literature under

several formulations and different aspects. Many on-line heurestics have been devised for

the LU problem. We investigate them and furthermore, we attempt to simply extend some

of these on-line algorithms to handle successful and unsuccessful searches, as weil as

insertions and deletions.

3.2.1 Problem Motivation

List update problem consists of maintaining a dictionary2 as an unsorted linear list

of items. The input is a sequence of operations, where each operation accesses, inserts or

1 Also see paragraph 3.3.
: An abstract data structure that involves a collection of words and requests for insenions, deletions and
membership operations.

fast memory and m virtual memory pages, the number of states is Therefore, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line M jdels and Applications 38

deletes an item. The cost of performing the searched item depends on its position in the

current list Searching is done sequentially starting from the front of the list The list is

maintained according to rearrangement rule called an update or self adjusting heuristic,

which is applied as part of every operation. This list is referred to as self-adjusting list,

since eventually it converges to the optimal static adjusting list After an item is accessed,

it can be moved anywhere closer to the front of the list in constant time (i.e., with no extra

cost) using a paid exchange. Th> , the total cost of moving the item via a paid exchange is

the distance the item is moved. As the term "self-adjusting” suggests, our goal is to arrive

at the optimal static adjusting of the list.

List update techniques have a lot of applications in practice since they are simple

to use. They have been used to design data compression algorithms [49] and efficient

simple algorithms for computing point maxima and convex hulls [48].

3.2.2 Self-adjusting Linear List Algorithms
Several heuristics for the LUP have been considered in the literature. The first

three most common list heuristics, the Frequency Count (FC), the Transpose (77?) and the

Move-To-Front (MTF), were proposed by McCabe [256]. A broader survey of self-

adjusting data structures and linear list algorithms can be found in [173,325].

Definition of FC Heuristic: We maintain one counter per iiem to keep a count of the

current number of requests for that item. After every operation, the counter for the

accessed item is incremented and the list order is updated so that the items are arranged in

decreasing order of request frequency.

In Figure 3.1, we see an example of an operation using the FC heuristic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 39

I t e m s : 12 4 2 11 18 13 8 21 7 3 14 5

C o u n t e r s : 9 8 8 6

V

J 5 5 3 2 2 2 1

I t e m s : 12 4 2 1 1 8 18 1.1 21 7 3 14 5

C o u n t e r s : 9 8 8 ft 6 5 3 3 2 2 2 1

Figure 3.1: Frequency Count Example.

Definition of the TR Heuristic: Every time an accessed item moves forward one

position at the front of the list (unless the item is already there) by interchanging cost /,

where x is the /th item.

Bentley and McGeoch [50] showed that transposition heuristic is not competitive.

Definition of the M TF : Every time an item is accessed it is moved to the front of the list

with the intervening items being shifted back one position in the list to make room at the

front (If the item is already at the front of the list, the list is not changed.)

. . 14. L 5.12 4 2 11 18 13 8 21 7 3

MEMBER(8)

* 12 4 2 11 18 8 13 21 7 3 14 5

MTF Heuristic

8 12 4 2 11 18 13 21 7 3 14 5

Figure 3.2: List Update Heuristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 40

In practice, it is easy to check that the expected cost of TR converges to a better

asymptotic value, but that the convergence of MTF is faster. Unfortunately, there are no

analytic results about the behavior of TR in the literature, except for some simple cases.

Experimental evidence (e.g., [50,51,57]) has shown that in real life situations, the lists

using MTF do quite well compared to lists using FC as well TR. It is a much more difficult

problem to prove it mathematically. It should be noted that both the TR and MTF

heuristics are instances of a more general heuristic called the Move-ahead-k-heuristic, first

studied by Rivest [296]; that is, TR (resp., MTF) heuristic is equivalent to move-ahead'1

(resp., move-ahead-~) heurestic.

Sleator and Tarjan [330] analyzed the competitiveness of list update heuristics and

proved that MTF is 2-competitive. The proof is inductive, because it uses the important

concept of a potential function in the amortized analysis as we have seen. A proof idea

follows;

At any step, let p be MTF's list and let q be OPT's list The potential function
<D(p, q) is chosen to be the number of pairs (called inverted pairs) of items
which appears in a different order in MTF's list than in OPT’s list It is then
easy to show that, at each step, C,* + A<l> < C,*, where C* and Co®,
respectively, denote the cost incurred by MTF and by OPT at the step and A<1>
denotes the change of the potential function at this step. Since 4> is non
negative and initially zero, it follows that MTF's amortized cost is less than
twice the OPT's cost for the access. The analysis for paid exchanges,
insertions and deletions is similar.

Furthermore, we can also prove that no deterministic on-line algorithm can achieve

a competitive ratio less than 2 against a strong adversary (i.e., MTF is an optimal among

2 L
all the deterministic heuristics for LUP [173,312] with competitiveness 0 (- —), where

Ld ^ 1

L is the size of the list).

Recently, Lai and Wood [233] have presented two new randomized list update

heuristics:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 41

• The first heuristic, the randomized transposition (RT) heuristic, performs at most one

transposition (i.e., interchange any two adjacent items) on each access and its expected

search time is 4-competitive against an adaptive adversary that manages a static list

(i.e., we say that RT is 4 -pseudocompetitive or statically 4-competitive). We note that

RT heuristic works, if a request can be only a search; that is, insertions and deletions

are not allowed. Although RT is statically competitive, it is not competitive in the class

of singe-exchange heuristics against an adaptive adversary (e.g.. RT has a competitive

ratio of Q(L) against TR heuristic).

• The second heuristic, the randomized-exchange (RE) heuristic, performs at most one

exchange (i.e., interchange any two items) on each access and is 4-pseudocompetitive

(resp., 8-competitive) against an adaptive, static (resp., on-line: e.g., MTF heuristic)

adversary. Thus, one obvious open problem is to improve the analyses of RT and RE,

or to show that their analyses are tight.

Sleator and Tarjan introduced a very simple method of maintaining a set of linearly

ordered items in a Splay Tree; that is, a dynamic binary search tree. The objective is to

maintain a tree, using only tree rotations so as tc minimize the total running time of a

sequence of dictionary operations. A splay tree performs tree rotations according to a

simple procedure called splaying. They proved that the amortized cost to access an item

in their scheme is O(logn) by using a simitar way to that in the proof of MTF algorithm.

The famous and still unresolved Splay Tree Conjecture1 states that splay trees have a

constant competitive ratio against a dynamic optimal off-line strategy. Such a result and

properties would be analogous to LUP's ones, whereas splaying has been proved to be

competitive only when compared with static algorithms.

1 A more complete definition may be found in die mice surveys of applications of amortized analysis
[173,325],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 42

Recently, Sherk [303,304] generalized splay trees defining the k-ary Search Trees

for some fixed k > 2 and he extended the heuristics, splay tree conjecture and Sleator -

Tarjan'& splay tree results. With k = 2 and splay trees used in place of 2-splay trees, his

Dynamic Optimality Conjecture (k-DOC) for k-splay trees is Tarjan s Dynamic

Optimality Conjecture for splay trees (DOC: on all sufficiently long request sequences,

splay trees are as fast as any implementation using a binary search tree (not just those

using a static tree); see [313]). In addition, it is not clear that any doubly optimal off-line

strategy exists for dynamic binary trees. If such a strategy exists, then it is sufficient to

prove that DOC maintains a balanced tree in a restricted class of data structures. This may

be an important step towards resolving these conjectures.

3.2.3 Randomized Competitive List-Updatc Algorithms
Reingold et al. [292] used the power of randomization to improve the

deterministic previous results and the competitiveness of the MTF algorithm. We consider

a randomized version of MTF for LUP as follow;:

Algorithm BIT

Let b(x) be one random bit for each item x, which is randomly initialized.

From then on BIT runs completely deterministically: after finding x, BIT

first complements b(x) and then moves x to the front of the list if b(x) = 1.

Figure 3.3: A Randomized MTF Algorithm for LUP.

Roughly speaking BIT is “move-to-front every other access” and it is 1.75-

competitive against an oblivious adversary.

BIT can be generalized to a family of COUNTER algorithms, which are a slightly

more complicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 43

Algorithm COUNTER (s, 5)

Let s be a positive integer and let S be any non-empty subset of [0,l,...,s-

1}. The algorithm keeps a mods counter for each item and each value

chosen independently with equal probability. At a request to item x,

COUNTER decrements the jc’s counter mods and then moves x to the front

of the list via free exchange if x’s counter is in S.

Figure 3.4: A Generalized Randomized M TF Algorithm for LUP.

BIT is COUNTER \{1}). In fact, COUNTER algorithm can be modified to

obtain a competitive ratio of >/3 [292]. It has been recently proved [330] that no

randomized algorithm can achieve a competitive ratio better than 1.5, while the lower

competitive bound of any algorithm for a list update problem cannot be better than 1.27

against such an oblivious adversary in a standard model (Reingold et al. [292] have

improved the lower bounds for three- and four-item lists to 1.2 and 1.25, respectively).

All the above algorithms for the List update problem share the same drawback as

MTF, that is, they do not efficiently handle unsuccessful searches, additions and deletions

as well. In fact, it is possible to modify the algorithm BIT to handle successful and

unsuccessful searches as well as insertions, but not deletions.

Algorithm BIT-UA

Deterministic step: Let p and s be two bits for each list item x. If xp is

ahead of x in the list, then p = 0; otherwise p = 1. Similarly x, is defined.

Find x by finding both xr and x„ in order to finish an unsuccessful search.

Random step: Let a third bit, b(,v), be the random bit. Initially, b(jc) is set

to 0 or 1 with equal probability. After a successful ftnd(x), we toggle b(x).

If b(jc) changes to I, we move x to the front, otherwise the list remains

unchanged. For an unsuccessful search, for each of the two boundary keys

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 44

(xp and Xj), we toggle the random bit; if a key’s random bit changes to 1,

we move it to the front (i.e., BIT-UA preserve their relative order). The p, s

bits ate maintained with constant extra time using the techniques described

in [292].

Hgure 3.5: A Randomized Algorithm for LUP to handle Successful and Unsuccessful
Searches as well as Insertions.

By dividing the expected change of the potential function into three parts and using

similar techniques as in [180,181,292], we find that the algorithm BIT-UA achieves a

competitive factor of 2 5 (i.e., 2.1.75-1) by summing up all successful and unsuccessful

searches. In addition, if BIT-UA allows insertions as well, this does not affect its

competitive analysis. In fact, BIT-UA algorithm can be improved using similar techniques

as for COUNTER algorithms [292] to achieve a competitive ratio of 2-V3-1 (<2.46142)

against an oblivious adversary.

Recently, Hui and Martel [179] have presented an improved version of BIT-UA

which was also able to handle deletions efficiently. They also proved that their new

modified algorithm BIT-UAD for the list update problem is 6-competitive against an

oblivious adversary when considering successful and unsuccessful searches, insertions and

deletions as well. It is also interesting to see whether we can extend the amortized

analysis, which uses both the accounting method and the potential factors approach

[100], for the list update algorithms to include deletions as well.

3.2.4 Weighted List Update Problem

The traditional model [50,173,312] for LUP may be generalized if we change the

cost of the operations that can be performed on the list. We study two further

generalizations, the weighted list [104,105] and the paid exchange {P*) models [312,292].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 45

For these generalizations, several algorithms with different competitive ratios have been

considered.

In the weighted list update problem {WLUP), any item of the list has an associated

cost that depends on the sum of the costs of the preceding items. The goal of the problem

is to minimize the overall cost of processing a request sequence and design efficient on

line algorithms.

Two MTF versions for WLUP are the following:

• The Counting MTF {CMTF).
This is a deterministic greedy strategy which uses one real counter per item
to decide whether moving the accessed items to the front.

• The Random MTF (RMTF), which is a randomized version of CMTF using
biased coins instead of a counter.

It has been shown in [104] that both of the greedy on-line strategies are 2-

competitive against a lazy1 adversary (i.e., an adversary that uses an (optimal) static

arrangement of the list, without resorting the list after each request).

A simple application of the WLUP is the tree update problem {TUP), where items

are to be found in the tree instead of in a sequential list. The tree is represented by a list of

successors and is searched by a left-to-right depth-first search. Thus, any instance of the

WLUP can be transformed into an instance of TUP using a tree of depth 1. Therefore,

AND-OR trees and Directed acyclic graphs (DAGs) under several visiting algorithms

1 In ihe context of server problems [254], a la y strategy for the adversary consists in moving as few as
possible items (servers) to service requests [104,285]. Clearly, die lazy adversary for LUP does not move
any item of the list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 Or.-line Models and Applications 46

could exploit efficient solutions for the WLUP and should lead to the design of

competitive algorithms [103,105].

Furthermore, another generalization has been studied, where the list searches to

retrieve sets of elements rather than just one item at a time. D ’Amore [103] presented the

following deterministic algorithm Move-Sets-Front (MSF, for short) for the list update

problem, which generalizes the well-known MTF.

Algorithm MSF

This algorithm moves to the front of the list any accessed set of items, without

changing either their relative ordering or that of the other items.

Figure 3.6: A Deterministic On-line Algorithm for LUP with Retrieval Sets.

It has been shown that MSF algorithm is (l+3)-competitive, both in the standard

and in the wasted work models [103], where 3 is the unknown maximum size of the sets

that will be requested. A randomized version of MSF is developed as follows:

Algorithm BITS (i.e., BIT-for-Sets)

It associates a bit with each element in the list and the n bits are initialized

uniformly and independently at random. Whenever one accesses a retrieval

set rJt the bit of the last element of r, in BITS's list is complemented and if it

changes to 1, the accessed set is moved to the front of the list, otherwise it

remains unchanged.

Figure 3.7: Algorithm BITS for WLUP with Retrieval Sets.

3
Algorithm BITS is (1 + — 3)-competitive against an oblivious adversary both in the

4

standard and in the wasted work models [103]. Again, both MSF and BITS algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 47

have the same drawback; that is, they handle only successful searches. We can easily

modify MSF (resp., BITS) to get the randomized algorithms MSF-U (resp., BITS-U), in

order to handle successful and unsuccessful searches as well as insertions, but not

deletions. Easily, the algorithm MSF-U (resp., BITS-U) has a competitive ratio of 1 + 2|S

(resp., 1 + -^(3) against the same models as in the successful case. For these

generalizations of the traditional list update problem, some properties of the optimal (off

line) algorithm do not hold any more and hence, they provide negative results as well as

some general interesting open problems [103.104], For example: can we design

randomized algorithms that allow us to overcome the difficulties o f the deterministic

ones?

Finally, Luccio and Pedrotti [359] have considered LUP in parallel computation

(PLUP), using the EREW-PRAM model [210]. The MTF strategy has been adopted to

solve LUP using n processors, one for each list allowing to move items from one list to

another. This parallel MTF strategy (PMTF) is a deterministic (n2 +l)-competitive, while

a lower bound is 2n. They showed that randomization helps for PLUP drastically reducing
Q O

the competitive ratio to *|-n, versus a lower bound ^ n . As a side result, the same

competitive ratios (i.e., 2 for the deterministic and for the randomized case) are

derived for the sequential LUP when n = 1 as we have already known (see [292,312] as

well). Thus, it would be interesting to design efficient competitive algorithms for other on

line problems in parallel computation.

3.3 Paging Problem

We consider the Paging problem [141,255,261,312,347] which is of fundamental

interest among on-line problems. We especially examine three variants on the standard

model for the competitive analysis of paging algorithms which allow randomization, weak

and strong lookahead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 48

3.3.1 Problem Motivation and Complexity Results
The paging problem is defined as follows: Consider a computer system which has

two-level memory, a fast memory (or equivalently a cache or hit) with capacity for k items

(representing pages or servers) and a slow memory with unlimited capacity. A set of

pages is to be kept in storage at all times where n > k. In response to each request, the

requested k pages must be moved into the fast memory and the other n - k pages (faults)

will reside in the slow memory.

When a program requests access to a page that lies in the slow memory, we say

that a page fault occurs. It is typically expensive to handle such a page, because some

page (or pages) must be evicted from the fast memory to make room for the new page.

The goal of the paging problem is to choose which pages have to be evicted in order to

minimize \hefu~!r rate (i.e., the number of page faults) that occurs.

In terms of our formulation, a page replacement strategy or a paging algorithm is

on-line (resp., off-line) if the algorithm chooses which page to evict without (resp., with)

knowledge of future requests.

Here, a schedule is the appropriate request sequence of evictions and the number

of evictions is the cost o f the schedule. The cost of strategy S on a sequence r for a given

size k of fast memory is the cost of the schedule produced by the deterministic algorithm

and it is denoted by Cr (S, k). In the case of a randomized paging strategy, the cost of the

schedule is a random variable and the cost of the strategy refers to the expected cost of the

schedule.

Now, the issue is how we can analyze such on-line algorithms. The classical

worst-case analysis is useless, because if arbitrary reference sequences are allowed, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 49

an adversary that always references the last discarded page can force any paging algorithm

to fault on each reference.

Average-case analysis is also problematic, since it requires a statistical model o"

the reference sequences. It is extremely difficult to produce a realistic model, since the

pattern of access changes dynamically with time and with different applications.

Nonetheless, several of the early analyses of paging algorithms were performed in the

independent reference model, which assumes a fixed probability distribution on the

reference sequences [144,307],

Sleutor and Tarjan [330] used the competitive analysis, which avoids the

assumptions of probabilistic analysis and has the power of differentiating paging

algorithms. Before we develop and analyze specific paging algorithms using competitive

analysis, it would be useful to know that the synthesis of optimal on-line algorithms is, at

least theoretically, achievable.

Proposition 6.1. Generally, it is undecidable if a given paging algorithm A achieves a

given competitive ratio.

Proof: For every i, we could design an algorithm a, which follows a known competitive

algorithm on the jlh request if the Turing machine on input i halts in at most j steps, or

else it follows a known algorithm with no finite competitive ratio.

The above undecidability result holds as well as for any extended on-line paging

problem (e.g., the k-server problems).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 50

33 ,2 Paging Algorithms
We consider the following paging algorithms:

OPT or M IN Algorithm: Belady's algorithm [45], which yields an optimal (minimum

cost) off-line scheduling for paging by evicting the page (item) whose next request is

further in the future.

LRU: Least-Recently-Used, which evicts the page that has been requested least recently.

RAND: Whenever a miss occurs, a cache location is chosen at random and the page

(item) in it is evicted. The algorithm is memoryless1 but uses logn bits of randomness per

miss.

FIFO: First-In-First-Out, which evicts the page (item) that has been in the fast memory

the longest.

FWF: Flush-When-Full, which evicts all pages (items) when space is needed.

RFWF: Random-Flush-When-Full [254]. Same as FWF, except that a random invalid

entry is selected for eviction. The algorithm uses n memory bits and up to logn random

bits per miss,

MARK: The Marking Algorithm [141,347], a randomized paging algorithm which evicts a

page chosen uniformly at random from the set of pages not in the fast memory of FWF

when memory is needed.

1 An algorithm with zero memory is deemed memoryless.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 51

We can easily verify that all of the above presented strategies, except OPT, are on

line and all are conservative; a paging algorithm is conservative if the following holds:

(i) no evictions before k + 1 distinct pages have been requested, and

(ii) at most k evictions have been incurred during any subsequence of requests
to at most k distinct pages.

Unfortunately, the above facts are not practical and variant paging algorithms that

have the same competitive ratio may behave very differently in practice. On the other

hand, good paging algorithms, such as FIFO and LRU are k-competitive, and hence best

possible in their model. They have been observed to achieve a page fault rate, on reference

sequences that arise in practice, while LRU has been almost always superior to FIFO

[348].

3.3.3 Randomized Paging
Randomization can help on-line paging algorithms. Let k (resp., h) be the fast

memory size of an on-line strategy (resp., the O P T). Generally, the competitive ratio of an

algorithm depends on k and h, where h < k. For the special case h = k, deterministic on

line algorithms are at best k-competitive, whereas MARK is 27/*-competitive [347].

McGeoch and Sleator [261] have presented a more complicated randomized

paging algorithm which has a competitive factor of //* (the k-rh harmonic number). On

the other hand, no randomized on-line algorithm is less than /^-competitive.

Young [347,348] generalized the above results showing that, when h < k, MARK

algorithm is 2 (ln — — - Inin— — + —)-competitive if —-— > e and 2-competitive
k - h k - h 2 k - h

otherwise. He also showed that the competitive ratio of any randomized on-line paging

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 52

k k 2
algorithm is at least Hk, if h = k‘, and at least In - Inin - ------- , if h < k and

k - h k - h k - h

> e 2. Here, we note that when * £ e the analysis of MARK shows that its
k - h k - h

competitive ratio is at most 2.

33.4 Paging with Weak and Strong Lookahead

We introduce two new on-line models of lookahead for on-line paging problems

and we study their influences on competitive paging algorithms.

According to Young [347], a paging strategy is on-line with a resource-bounded

lookahead o f size I (i.e., the intuitive weak lookahead o f size I) if it sees the present

request and the maximal sequence of future requests for which it never incurs more than I

evictions on any such request subsequence, where / > 1 is an integer.

In this model, the paging algorithm is a given lookahead queue with known

contents which may either service the request at the head of the queue (provided there is

one) or add an additional request (if there is one) to the end of the queue.

Young presented the following randomized on-line algorithm MARK(l) with a

weak lookahead of size /:

Algorithm MARK(l)

At the beginning of each phase execute an initial step: Add requests to the end of the

queue until either k distinct items or / new requests are in the queue (or there are no more

requests). Choose pages (items) uniformly at random from among the pages in fast

1 An alternate proof of the lower bound when h = k is given by Fiat et al. [141], The advantage of this
proof is that it generalizes nicely to h < k.
2 e is the base of natural logarithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 53

memory which are not contained in the current lookahead queue and evict these pages.

Finally, apply the MARK algorithm after this initial step.

Figure 3.8: A Randomized Paging Algorithm with a Weak Lookahead.

2k
MARK{1) algorithm is max{ — , 2}-competitive, while its deterministic version

DMARK(l), which only allows arbitrary choices of items, has a competitive ratio of

2 (/n-y+l) [347].

However, the model of weak lookahead is not realistic in practice, but it is

theoretically interesting and leads to reduced competitive ratios. The goal is to find a new

model which has both realistic as well as theoretical interest and can significantly improve

the competitive ratios of on-line paging algorithms.

A paging algorithm is on-line with strong lookahead11 if it sees the present request

and a sequence r = (r(l), r(?).... r(m)) of m future requests that contains / pairwise

distinct pages, where r(t) denotes the request at time t.

Now, all on-line lazy1 paging algorithms can be easily extended to a new model of

strong lookahead of size / < k-2, where k > 3 is an integer. For example, the deterministic

LRU(l) (or the randomized MARK(l)) paging algorithm with strong lookahead / 5 k-2 is

(k- O-competitive (resp., 2 H,k-/rCompetitive) only against the oblivious adversary.

Furthermore, all lazy on-line algorithms with strong lookahead can be simply

generalized, if the algorithms do not use full lookahead but rather serve the request

1 More practical on-line models might be considering loose competitiveness of strategies with regular
lookahead [347], assuming an average (rather than consistent) weak lookahead of size /, or assuming that
the sequence is fixed by an adversary of the lookahead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 54

sequence in a series of blocks instead of list items only. For example, the new obtained

LRU(l)-B and RANDOM(l)-B lazy paging algorithms, with strong lookahead I £ k-2 using

blocks, are (k-/+l)-competitive. The above result shows that LRU(l) (resp., LRU(l)-B) is

optimal (resp., nearly optimal).

Clearly, if / = k -1 and the total number of different pages in the memory system

equals k+1, then LRU(l) is 1-competitive because it behaves like Belady's optimal paging

algorithm MIN. On the other hand, the competitive ratio of the (lazy) RANDOM(l)-B

algorithm does not achieve any improvement upon the previously presented RANDOM(l)

algorithm with strong lookahead I < k-2.

Finally, Raghavan and Snir’s results [285] can be extended as follows:

Theorem 3.1. Let I > k-2 with k> 3. k€ 2? and let A b e a deterministic (or randomized)

on-line lazy paging algorithm with strong lookahead I. I f A is c-competitive, then c> (k-

l, (resp., c > Hk.t) against only the oblivious adversary.

Proof: The proof is similar to Raghavan's proof [285] by also applying Yao’s min-max

principle [344].

The proofs of all above generalized results are almost similar to those of the weak

lookahead and are hence omitted. Actually, these upper bounds can be slightly generalized

using Young’s extension results [347], but they are weak and therefore their

corresponding on-line paging algorithms seem not to take full advantage of the strong

lookahead. It is surprising that the advantage of lookahead was not simply a tradeoff in /,

but rather produced a threshold effect. Furthermore, the point at which lookahead

becomes an advantage is quite high.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-.ii. * Models and Applications 55

3.3.4 Competitive Distributed Paging
In this section we study the competitive analysis of algo .dims for on-line paging

problems in a distributed environment. Especially, we deal with the file (or page)

migration and replication problems, as well as the more extended abstract data file

allocation (or assignment) problem.

The fiU allocation problem (FAP) [40] is the distributed memory management

problem for a globally addressed share memory of large multiprocessor systems, which

typically limited local memory capacity. A global shared memory in multiprocessor system

is modeled by distributing the indivisible blocks such as physical files (pages) among the

local memories. However, a full file may be replicated in various processors throughout

the network at a cost equal to the distance traveled times the page size factor D and

discarded over time under the following assumptions:

• At least one copy of every file must be stored somewhere in the network; and

• the multiple conies must be kept in consistency (i.e., files cannot be split among

processors).

The objective is to device residency on-line strategies (i.e., in the presence of on

line and unpredictable access pattern) that decide which local memory should have the

copy of a readable and writable file requests so as to optimize the total communication

cost in processing a sequence of file-accesses.

The file allocation problem is the simultaneous solution to two partial proolems,

the page migration and page replication problems [58], FAP collapses to page migration

(resp., replication) problem if only writes (resp., reads) occur. Clearly, the page

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models a .d Applications 56

replication problem is a fundamental on-line problem whose simplest case corresponds to

the ski rental problem.

The problem of designing efficient file allocation algorithms has been studied

from both the practical and theoretical point of view [41,47,58,85,226,354]. We study the

transformation of some standard or centralized model [204,313] (i.e., using only global

information of the system) into the more realistic distributed model.

Black and Sleator [58] have considered an optimal deterministic 3-competitive

algorithm for the migration problem on trees, uniform networks and metric spaces. They

have also showed that no deterministic on-line strategy could be better than 3 (resp., 2)-

competitiveness for the page migration (resp., replication) problem on any metric space

of three points.

Chrobak et al. [85] have proposed the following randomized, migration algorithm

when the uniform metric space M has only two points, x and v.

Algorithm PAND MIGRATION

Suppose the current offset function1 (w(jr), w(v)) = (0, |3) (symmetrically, if the offset

function is (0, 0)), where 0 < (3 < D. This algorithm uses the probability distribution that

D + P a , D * Pplaces mass p& = n -r- on x and 1 - Pp= —5fv~ on >•

Figure 3.9: A randomized Page Migration Algorithm for any Metric Space of Two Points.

1 An w n r k ftnciion [58,89] whose infimuu alue is zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 57

Algorithm RAND-MIGRATION achieves a competitive ratio of Cd = 2 + ■—

which is optimaI for the page migration problem on a metric space of two points. This

algorithm can also be extended to a randomized Co-competitive strategy for a uniform

metric space and any tree [85].

The following Table 3.1 summarizes the randomized, distributed competitive,

migration algorithms against oblivious adversaries (otherwise, it is specified) and their

performance ratios.

Network topology Competitive ratio Reference

Any network 1 + 0 = 2.61 1 [85]

Uniform networks ((5 + Vl7)/4) = 2.28 [851

Metric spaces of 2 points Co ; [85]

Continuous trees c 0 [85]

Hypercube and meshes (in Lt metric) CD [85]

Metric space of 3 points 3 [58,85]

Table 3.1: Randomized Page Migration Algorithms and their Competitive Ratios.

Next we describe a randomized po-competitive algorithm for replication problem

on trees and uniform networks, which is optimal for all values of page size D, where p =

d £ _ l and Pl, = r ^ _

1 $ the golden ratio and llie on-line algorithm is against an adaptive adversary.
2 Co = 2 + 3^ , where D is the page size factoi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 58

Algorithm RAND-GEOMETRIC

Choose a random number i from the set {1,2..... . D} with probability p, = a p '1, where

a = * . Process the request sequence and maintaine a count (initially zero) on each
pu - 1

edge of the tree. If there is a request at node \> that does not have the page, then all counts

along the path from o to the closest node with the page are increased by 1. When a count

reaches the value of the randomly chosen number, the page is replicated to the child node

of the correspondng edge.

Figure 3.10: A Randomized Page Replication Algorithm for Trees and Uniform Networks.

The above RAND-GEOMETRIC algorithm can easily be extended to a 2pD-

competitive strategy for a ring by cutting it at the point opposite (or uniformly at random)

to the starting node of the ring which initially has the page. We observe that lim po =
D-*~

3.16 (i.e., e is the natural logarithmic base). Moreover, if we don’t use the onlyC " 1

one random number which is used during the initialization step, then the above algorithm

becomes a completely deterministic, ‘/-competitive strategy for replication problem. Koga

[226] has also presented another interesting on-line replication algorithm COINFUP

which achieved a competitive ratio of 2 for trees and 4 for rings.

In the following Tables 3.2 and 3.3, we summarize the competitive performances

of the replication algorithms against an oblivious adversary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 59

Network topology Competitive ratio Reference

Trees and uniform networks 2 [58]

Trees and uniform rings 1.58e-1
[4,356]

Ring 4 [47]

Ring1 3.16 [4]

Any network topology 7 [29]

Table 3.2: Deterministic Page Replication Algorithms and their Performances.

Network topology Competitive ratio Reference

Trees (1+ 1.71 [226]

Rings 2-<2+V3) [41]

Circles 4 [92,226]

Rings2 4 [226]

Table 3.3: Randomized Replication Algorithms and their Competitive Ratios.

Awerbuch et al. [29] have proposed a various centralized, deterministic migration

algorithm on arbitrary network:

Algorithm MTM (i.e., Move-To-Min.)

Divide the request sequence into phases. Each phase consists of D consecutive write

requests at processors pi, p; pc. During a phase the algorithm doesn’t move the copy

of the file. At the end of phase, migrate the copy to processor pm in the network such that

D
X </(/>.,pm) is minimized.

i = 1

Figure 3.11: A Centralized Migration Algorithm on Arbitrary Networks.

1 Either a deterministic or memoryless algorithm.
2 Against an adcrtive adversary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 60

Theorem 3.2. Algorithm MTM is 7-competitive on arbitrary network topologies.

Proof sketch [29]; We show that AO < 7- CosUdv - CosturM using the potential function

0 = 2 /> d (a o , p), where oto (resp., p) denotes the position of the adversary’s (resp., the

on-line) copy at the beginning of a phase.

The same authors [29] extended the above algorithm MTM for the FA problem

which is the simultaneous solution to both migration and replication problems. They

proposed a centralized FA (i.e., CFA for short) (resp., a distributed FA (DFA)) algorithm

which is 0(/<?£n)-competitive (resp., 0(/og4n)-competitive).

Recently, Bartal et al. [40] presented a simple distributed version of the

deterministic FWF [204] and those of the randomized MARK algorithm [141] for the file

allocation problem on specific network topologies (e.g., trees and uniform networks).

Furthermore, Awerbuch et al. [28] proposed a new randomized competitive

distributed paging algorithm (so called Heat & Dump) against oblivious adversaries for

uniform networks, whose competitive ratio was logarithmic in the local storage capacity.

We observe that all results on the performance ratios of the distributed paging

algorithms demonstrated the power o f randomization for the page migration, replication

and file allocation problems. Additionally, some important open questions for these

problems are the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 61

• Consider various assumptions for these problems in order to address real-life concerns

(e.g., issues regarding delay and congestion)-, and

• Close the gaps left in the upper and lower competitive bounds for arbitrary networks.

In conclusion, we like to point out that the general structure of combining

deterministic and randomized algorithms, with a minimum competitiveness, is a promising

tool for designing new efficient on-line strategies.

3.3.5 Recent Related Results of the Paging Problem

Recently, considerable work has been done to competitive analysis of on-line

algorithms in order to extend the Paging Problem and improve their lower competitive

bounds.

Borodin et al. [65] considered the paging problem on restricted classes of inputs

that occur in practice. In their work “Competitive paging with locality o f reference”, they

assume that an on-line algorithm knows in advance if the input it will receive falls in a

particular class. In this sense, the problem is less “on-line”, because it restricts the

arbitrariness of the adversary in generating a sequence of requests. The access graph, a

model of a program’s reference patterns, has been developed to determine a restricted

class of inputs. Many classical algorithms (e.g., LRU, FIFO and marking algorithms) of

paging problem on the access graphs, (also, on their further extension to directed and

structured graphs [205] have been reanalyzed deriving useful properties and nice lower

bounds on their competitiveness.

Feuerstein et al. [137] studied another extension of the paging problem to graph

problems. This includes the Path paging and Connectivity paging problems in graphs,

which, besides their theoretical interest, have significant applications to the memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 On-line Models and Applications 62

management problem of data structures for graphs. An important issue would be to

extend these results to weighted versions of paging problems making them more

applicable in practice.

Finally, in the next section, we will study two other extensions of the paging

problem, the problem o f maintaining caches in a multiprocessor system [254] and the k-

server problem [255]. These problems are based on more general and complex models,

but they share essentially the same fundamental serving (paging) property (i.e to serve

(page) the request).

A great truth is a truth whose

opposite is also a great truth.

Christopher Morley

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

The k-Server Problem and Algorithms

The interest o f science lies in the art o f making science.

Paul Valdry

In this chapter we introduce two generalizations of the paging problem, the

weighted caching and k-server problems. Particularly, we enumerate the weighted

caching and k-server algorithms summarizing relevant previous work.

Furthermore, we present some new results about the strong competitiveness of the

2-server problem against a lazy adversary and we extend Coppersmith et al. theory on

resistive graphs [98,99] to non-resistive spaces (i.e., no symmetry of the edge weights

(costs)). We develop methods for the synthesis of the random walks, and use them to

design competitive randomized on-line algorithms for the k-sener problem and its well-

known related problems (i.e., task systems and cat-mouse game) on non-resistive spaces.

4.1 The Weighted Caching and k-Server Problems

4.1.1 The Statement of the Problems

The weighted caching problem is a generalization of the paging problem in which

the cost of evicting an item (page) n is a non-negative function W(r,) of the item (i.e., the

costs of moving different items into the cache differ). This scheduling problem as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 64

the disk-head motion planning problem [254,255] were first introduced by Sleator and

Tarjan [312].

The k-server problem is a further generalization and was first formulated by

Manasse et a l [255]. In this problem, the cost is a non-negative function dfrj. r,) of the

item n evicted and the item r, requested, and the fast memory is assumed to be initially full.

Except for the special case of weighted caching, the distance d is assumed to be metric

(i.e., symmetric, satisfying both the triangle inequality and dfo, r,) = 0 for every i * j).

The famous k-server problem is an appealing special case of metrical task systems

and has been one of the most extensively studied on-line problems in the past several

years. A reason for the interest is that the k-server problem is a natural abstraction of

paging, weighted caching and planning the movement o f diskheads, where k mobile

servers reside in a metric space [254]. In addition, this problem is both practical and

simple to be defined.

The k-server problem may be transformed into the following network problem.

There are k servers which are free to move around from point (“request”) to point in a

metric space, and each request must be serviced by some server moving to cover the

corresponding point in the space. For simplicity, we can assume all servers to be on some

arbitrary points initially.

The cost of a k-server (on-line or off-line) algorithm is the total distance traveled

by the servers. A dynamic programming algorithm can be used to compute the cost of the

optimal off-line algorithm handling a request sequence [255].

If the metric space is the uniform (or unit) metric space U„ with n points (i.e., the

distance between any two points is 1), then the k-server problem reduces to the paging

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 65

problem with points in the space corresponding to pages (items) of slow memory and

servers corresponding to page slots in fast memory.

4.1.2 Weighted Caching and k-Server Algorithms

Many natural algorithms for the k-server problem fail to achieve a bounded

competitive ratio. For example, consider the following greedy algorithm: “Answer each

request by moving the closest server”. In any metric space where arbitrary small positive

distances occur, the greedy algorithm can be defeated by placing requests alternately at

two points that are sufficiently close together. The greedy algorithm will construct an

unbounded cost by shuttling the same server back and forth forever. On the other hand,

the performance ratio of optimal off-line algorithms can be bounded by stationing a server

permanently at each of the two points on the same request sequence.

We consider the following weighted caching and k-server algorithms:

o p t: The algorithm that produces an optimal k-server or weighted caching schedule.

BALANCE: The Balance algorithm or BAL [254,255,347] for k-servers:

Algorithm Balance

For each server the algorithm maintains the total distance it has moved, since
the start of the request sequence.
If the server is currently at point i, the distance traveled by i so far is denoted by W,.

Now consider a request at a vertex j.

• If j is already covered by a server, then BAL does nothing.

• If j is not covered, then BAL moves the server i to the point j, where i is chosen

to minimize + d(i, j).

Figure 4.1: The Algorithm Balance (BAL) for k-Server Problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 66

In other words, BAL moves any server that would have the smallest cumulative

cost after moving. As indicated by its name, the balance algorithm tends to use all of its

servers equally.

GREEDYDUAL: The greedy dual algorithm [347] for weighted caching:

The algorithm maintains values (credits) on the servers. Initially the value of
server is the weight of the node it serves. When an unserved point (“request”)
is requested, the server values are decreased by the minimum server value,
some zero-valued server is moved and its value is raised to the weight of its
new point. When a served point is requested, the server value is reset
anywhere between its current value and the weight of its point

The GREEDYDUAL algorithm may be described as follows:

Algorithm GREEDYDUAL

Each server has a varying amount of credit. In response to request 0, all servers are

placed on ro with no credit. In response to each subsequent request j to node r,,

1. If node Tj has no server:

a) Each server's credit is increased equally until some server has enough

credit to move to r,-. (If a server is currently on r,, it must have d(r„ r;) =

w(rj) credit to move to r;.)

b) One such server serves request;, giving up all its credit

2. If node r, has at least one server:

a) One such server serves request j.

b) Unless the server has not yet moved, it gives up an arbitrary amount

(possibly none) of its credit

Figure 42: The GREEDYDUAL Algorithm for Weighted Caching Problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 67

The performance of on-line algorithms for weighted caching and k-server problems

have been analyzed using competitive analysis. Manasse et al. [255] show that no
fa

deterministic on-line k-server algorithm is better than (- —^-j-)-com petitive‘ in any

metric space (or graph with symmetric edge weights satisfying the triangle inequality) with

at least k+1 points. Chrobak et al. [87] have shown independently, that balance algorithm

(BAL) is at least k-competitive (when h = k) for the general k-server problem in any

metric space with at least k+1 (distinct) points. The proof uses a nice averaging

technique:

Proof idea:
For every on-line algorithm a , the adversary constructs a sequence such that
there are k different algorithms, which have a total cost equal to a ' s cost.
Thus a ’s cost is at least k times greater than the cost for one of these
algorithms. Since the lower bound holds for any metric space with at least
k + 1 distinct points, the proof is similar to the proof that the competitiveness of
any deterministic paging algorithm is at least k. I

The proof can easily be extended for randomized algorithms against an adaptive on-line

adversary.

GREEDYDUAL is a new algorithm that generalizes LRU, FWF, MARK and BAL

ft
with optimal (------------^competitiveness for weighted caching. This algorithm is of

k - h + l

practical interest and gives the first result we know of showing reduced competitiveness

when h < k for any problem other than paging. GREEDYDUAL is a primal-dual,

deterministic, on-line weighted caching algorithm of theoretical interest as well, because

the motivation by the discovery of a general technique (so called the Primal-dual

bounding technique [347]) is implicit in the analysis of the algorithms it generalizes [347].

1 Remember that h refers to the fast memory size of the optimal off-line algorithm OPT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 68

A sketch o f the primal-dual bounding technique is the following:

“We formulate the problem as an integer linear program (ILP), so that each
solution to the problem of ILP yields a linear program (I P) (which,
incidentally, has optimal integer solutions) of equal cost. The cost of any
feasible solution to the dual of this LP is a bound of the optimal cost”.

The GREEDYDUAL implicitly generates a solution to the dual program (DP) of

LP. The goal of the dual solution is actually two-fold:

• GREEDYDUAL uses the structural information that the solution provides about the

problem instance to guide its choices, and

• the cost of the dual solution of this linear program can be used as a lower bound and

also correlates it with the on-line algorithm to show competitiveness.

Primal-dual technique is also important for approximation problems [272],

including on-line problems, because it helps reveal combinatorial structure, especially how

to bound optimal costs. This approach has been explicitly used for finding approximate

solutions to NP-hard connectivity problems [160].

Generally, duality has been used to obtain lower bounds on the complexity of

randomized algorithms [100], on randomized communication complexity [247] and m

other contexts; for example Von Neumann’s min-max Theorem for zero-sum games may

be viewed as a special case of linear programming duality [344], In particular, we shall

use this technique to reanalyze the weighted matching on-line algorithms (see section

5.2).

4.1.3 More Related Work

There has been considerable work on k-server problems. Manasse et al. posed the

following famous conjecture:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 69

The k-Server Conjecture: In any metric space there is an on-line algorithm which is

k-competitive.

They also gave an elegant proof that no deterministic algorithm can be better than

k-competitive.

Much excellent work has been done (e.g., see [82,191]) in attempt to solve the k-

server conjecture which has been verified only for k = 2 by the present time. It has been

open for some time to find a general algorithm for k-server problems such that there is a

function of k which bounds the competitiveness of this algorithm in any metric space. As

a result, researchers mostly turn to special cases (e.g., to restricted metric spaces).

Manasse et al. [255] presented optimal k-competitive algorithms for k-server

problems in any metric space with n points, when k = 2 or n-l. However, implementing

their algorithms requires space linear in, and time quadratic in, the minimum of the number

of requests seen so far and the number of points in the metric space. It is more desirable

to have an algorithm the time and space complexity per request of which is a function of

the number of servers.

Irani et al. [191] and later Chrohak etal. [82,84] showed two algorithms that only

maintain one variable and only perform a constant number of operations to decide which

server has to service a particular request. Both algorithms have a constant competitiveness

for the 2-server problem.

Chrobak et al. [87,285] showed an optimal k-competitive algorithm when the

metric space is the real line. The algorithm is very simple and follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 70

Algorithm Real-line

Upon a request to a point /, if / is to the left or to the right of all the servers, just move the

closest server. Otherwise move one server directly to the left and another directly to the

right of i at the same speed. When one of the servers reaches i, then servers stop.

Figure 4.3: A k-Server Algorithm for a Real Line

This k-competitive on-line algorithm can naturally be extended for V servers on

trees as well [86]. Algorithm GREEDYDUAL for the weighted caching problem appears

to be closely related to the above algorithm.

Fiat et al. [142] first showed a randomized algorithm, so called expand-contract,

whose the competitiveness is bounded by an O (klogk) exponential function in a metric

space. This algorithm is defined recursively in terms of /-server problem for I < k, whose

base case is simply the greedy /-server problem. Later on, they used an interesting

technique [14i,142], which is essentially a MIN generator over on-line server algorithms,

to prove the upper bound on the competitiveness of expand-contract algorithm.

Next, Raghavan and Snir [285]1 presented a very simple and practical algorithm

harmonic for k-servers in any metric space., while Grove [163] proved that the

competitiveness of this algorithm is (—k-2k-2k) e 0(k-2lr). This result is the best
4

competitive bound of any algorithm for k-server problem in a general space by the present

time. It is also conjectured that the correct competitive ration of the harmonic algorithm

0 (2k) (e.g., see [56,285]).

Finally, Coppersmith et al. [98,99] obtained a randomized k-competitive algorithm

for the k-server problem in finite resistive spaces. It is interesting for us to extend their

1 See paragraph 4.2.2 as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 71

results and show that randomized k'P 'iO-com petitive algorithms exist against the

adaptive on-line adversaries on finite non-resistive spaces.

The following two tables summarize all the competitive upper bounds of on-line

algorithms for special cases of the k-server problem known in the present literature.

Competitive Upper Bounds for k-Server Problem
_______ Deterministic On-line Algorithms _____

Competitive ratio Special Case Sources
2 k = 2 f82.84,l 01.2551
k k = n-1 [254,2551
k Points on a line [88,2851
4k2 Points on discrete circle1 [39,2851
12k3 + 4k2 -i4 € Otk3) Points on a (continuous) circle' [1391
k Weighted Cache [88,2541
k Points on a tree [86]

Table 4.1: Deterministic On-line Algorithms for k-Server Problem

Randomized On-line Algorithms
Competitive ratio Special Case Sources

31700 k = 3 r< i

3 k = 2 [82,84,1911

k Resistive graphs 98,99,285]

k-'P'(C) 3 Non-resistive graphs [This paperj

2k Points on a discrete circle4 [98,285]

l(k io g k) Any metric space [142,347]

k (— -2k-2) € 0 (k 2k)
4

Any metric space [1631

Table 4.2: Randomized On-line Algorithms for k-Server Problem

1 A discrete circle is a meinc space that consists of a finite subset of the circle points.
2 On the contrary, die (continuousI circle consists of an infinite set of points.
’ r < c) is the edge offset ratio, while die on-line algorithm is memaryless against a lazy adversary.
* In this case, die algorithm is against an adaptive on-line adversary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 79

Theorem 4.2. There exists a unique1 randomized c-competitive on-line algorithm against

any adversary fo r any 2-server problem with c<*2. Furthermore, i f the adversary is lazy,

then the equality holds (i.e., c - 2).

Proof: First, we compute the transition probabilities for any random walk of a 3-node

graph (i.e., without loss of generality for a n-node graph). These probabilities are unique.

We conclude that the expansion factor of the determined random walk against a lazy

adversary is 2. Note that on the larger cycle of the n-node graph, the expansion factor is

always bounded by 2 (i.e., also by Corollary 4.1: a generalization).

Let P be a 3 x 3 matrix of transition probabilities and let H be a 3 x 3 matrix of

hitting times. Assuming edge weight symmetry, elementary probability theory yields the

following three 2 x 2 linear system of the commute times

(H,, + H,,) = 2 - (d j j+ d,i) = 4 d,j for 1 < i , j < 3 and i * j ,

which have a unique non-negative solution in terms of the transition probabilities.

In addition, we find the following equations of hitting times circles on the 3 nodes:

(H|2 t" H23 + H31) = 2 (d|2 + d23+ di3)

(Hn + H32 + H21) = 2-(di 3 + d23 + di2)

Clearly, if the adversary is lazy, the expansion factor over all cycles, not just 2-cycles (or

commutes) or 3-cycles, is exactly 2. This occurs, because the hitting time from i to j is

composed of 2 parts and equals 2 d;, (i.e., exactly what we want!).

Next, we show that the random walk has an expansion factor of 2 even if the

adversary is non-lazy. Let us denote S,(j) as the set of all adversary algorithms where the

adversary makes no more than i moves, at most j of which are non-lazy moves. We can

easily see that for each / g S,(j), there exists an / g Si(j-1) such that the adversary can

always replace an t'th non-lazy move with a lazy move without decreasing the expansion

factor of its sequence. Thus, we can replace the strategy from S,(j) with a strategy from

Sj(j-1) without loss to the adversary.

1 The uniqueness is in terms of an only one probability matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 73

Given a network R = (r,j) of resistors (a network C = (C tJ) of conductances where

edge weight Cy = —), we can define the probability matrix for the random walk by Pm =
rv

Cjj/ C, where Ci = ^ G and 1 < i , j < n.
j

Let R,j denote the effective resistance between vertices i and j (i.e., a unit voltage

between i and j in this network of resistors results in an electric current of —). We

require that the support graph to be connected so that the effective resistances will be

finite.

Definition 4.1. A cost matrix C = (C ,j) is resistive if it is the matrix of effective

resistances obtained from a connected non-negative symmetric real matrix (G;j) of

conductances. The matrix (G tJ) is the resistiv" inverse of C .

Definition 4.2. A stochastic cost matrix P = (P(J) is ergodic if any state can be reached

from any other state; we call the corresponding random walk an ergodic walk. Then a

non-negative real cost matrix P is reversible if for all i , j , we have W, -P(J =WJ PJi = C,j / A

(i.e., symmetry of the edge weights), where W, is the stationary probability of being in the

ith state (node) and A = ^ G .
'J

Conversely, given a Markov chain defined by a reversible ergodic probability

matrix P, we can get the corresponding electrical network by taking G , = Wj-Pg.

Chandra et al. [71] extended the above work to arrive at new bounds for commute

and cover times for random walks. They used the harmonic probability distribution, which

was defined by Doyle and Snell [121], to get a system of linear equations of the hitting

times Hg (i.e., the expected length of a walk that starts at node i and ends on the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 74

reaching node j). These linear systems have unique solutions and turn out to be identical

if we identify the voltages with hitting times H,r

Using the same argument twice we can easily get the following equation:

H.j + Hji = 2m-Rg = AR„ (4.1),

where Hjj + Hj, is the commute time, m the number of edges and R, is the effective

resistance between nodes i and j . This result establishes the close relation between

commute times for the simple random walk on G and effective resistances in the electrical

network R.

If we think of edge weights d.j (i.e., the distance between nodes i and j) as vectors,

then the harmonic random walk as defined in [71] has transition probabilities Pg =

^ by making use of the notion of the expansion factor or stretch1 Hjj / djj of the
2*1 td*
j* ‘

random walk from / to j. Clearly, if we use the commute time of 2m Rjj as an upper bound

on the hitting times H.j, we conclude that the harmonic random walk has an expansion

factor of at least 2m.

Let P denote the transition probability matrix of size n x n of an ergodic markov

chain with stationary distribution W. Let = 0 2 for all i, and let H = (H(J) denote the

expected first-passage-matrix of hitting times for the above chain.

Lemma 4 .1.3 Pj>Hv = n - 1, fo r 1 <i, j <n.

1 Similarly, we can define the stretch of a random walk over a path or a cycle.
1 This condition is not needed in the case of non-resistive spaces.
5 This lemma also holds for non-resistive spaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The k-Servcr Problem and Algorithms 75

X ^ (X p ‘ Hv) = Y W j (H j j - 1) = X w (- i - - 1) = n - 1. since
Wo

/?!Foster's Theorem [99] suggests that X “ = n - 1, where i*->j denotes that the
.«, r,

nodes are connected by a finite r,j. We can very easily show, using the formula (4.1) and

Ri
because P is reversible, that X ^ p>x = ^ us’ Lemma 4.1, implies Foster’s

, . j i < j r "

Theorem.

Given P as above, we define P to be the following (n-1) x (n-1) matrix. Let P, =
n________________ __

W, (= X W' P-i), and P} = - W, P(J for 1 < /', j < n-1. Further, let Ha = Hj„ + Hnj, and

H* = H,„ + H„k - Hjk, for 1 < j , k < n-1. We then claim the following generalization of the

resistive inverse identity which is well known in electrical network theory (e.g., see in

171,121]).

Lemma 4.2. P H - I„.i, where I„-i is the identity matrix o f size (n - I) x (n - 1).

Proof: By elementary theory o f linear algebra and using the triangle inequality for hitting

times (see [143] for more details).

4.2.2 The Harmonic Algorithm for the k-Server Problem

We have seen that the simple greedy algorithm, which always chooses the closest

server, is easily failed by an adversary because of its predictability, and fails to achieve a

bounded competitive ratio. On the other hand, an efficient competitive on-line algorithm

Chapter 4

P roof : X Wj Pi- H ̂ =
‘■j

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 76

for the k-server problem should be obtained if we choose our servers to be close to the

request points.

Raghavan and Snir [285] presented a very natural, memoryless1 algorithm, called

Harmonic algorithm, which is defined as follows:

Algorithm Harmonic

Let di, d2 dk be the distance of each server from the current request. Send server i with

1 * 1
probability (—) / (£ —), which is inversely proportional to that server’s distance from the

d, dl

request point.

Figure 4.4: Harmonic Algorithm for k-Server Problem

Raghavan and Snir also showed that harmonic algorithm is 2-competitive and (n-

l)2-competitive against a non-adaptive adversary when k = 2 and k = n-1, respectively.

They did not see the usefulness of the analysis of the relationship between random walks

and server problems (or expansion factors and competitive factors) as being restricted to

k-node graphs. They showed that harmonic algorithm is 2-^ j-competitive against a lazy

adversary in any metric space with k points. A lazy adversary is relatively simple and it is

restricted to requesting a point that is occupied by an off-line server but not by an on-line

server if such a point exists. It can easily be proven that the competitiveness of the

harmonic algorithm is ^ j , because the competitiveness of the server algorithm is clearly

bounded above by the largest expansion factor of all phases.

1 As the name suggests, tl algorithm does not maintain any state information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 77

Furthermore, Raghavan and Snir conjectured the following:

Lazy Adversary Conjecture (LAC): The following (strong) adversary
strategy results in the poorest performance fo r memoryless algorithms:
Whenever there is a point in the space at which the adversary has a server
but we have none, the adversary presents a request at that point (instead o f
making a move and incurring a cost).

They also claimed (see [285], pp. 701, Theorem 18: its proof is omitted!) that even

without LAC they could bound the competitive performance of the harmonic on-line

algorithm in an arbitrary metric space for the 2-server problem in the interval [3,6].

Manasse et al. [254,255] gave a deterministic 2-competitive on-line algorithm for

the 2-server problem against any adversary and therefore the above claim is wrong even in

the randomized case.

Theorem 4.1. The strong competitiveness ratio o f the harmonic algorithm fo r the 2-

server problem is in the interval (1,3] (not in the interval range [3,6]).

Proof: Clearly, the harmonic algorithm against a lazy adversary has a competitive ratio (or

an expansion factor) bounded above by 3 (also, by Lemma 4.1). As we have seen, a game

against a lazy adversary always proceeds in a series of phases. Assuming that a phase

starts with k = 2 servers and those of the adversary overlapping on node 2. The adversary

requests node 1 and moves there with his server from node 3. Thus, the server pays the

C O St d 3 | .

We proceed using the harmonic algorithm against the lazy adversary, until finally

we answer a request with the server from node 3, and those of two servers overlapping on

nodes 2 and 1, then end this phase. The amount that has been paid is the expected cost

H13 of a random walk from 1 to 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 78

We get the following 2 x 2 system of equations:

{

H u = Pi3‘d i 3 + Pi2‘(d l2 + H 23)

H 23 = P23'd23+ P21‘(d21 + H u)

By solving the above system of equations and using the symmetry of the transition

probabilities p,j (where ’ <, i, j < 3) which are given by the harmonic algorithm, we have

that

u 2dn (2d21 + dn)
Hu — — — .

d 12 + d 13 + di 3

The above formula can be rewritten as

,dl l+dl l + dll d a —du
H 13 = 2 d 3r (----------------------- + ---------------------).

dn + d n + d n d i i+dn+d i i

Thus, the expansion factor for the random walk and hence the competitiveness of the

algorithm is

H u / d u = 2 (1 + d - ~ d- x).
dn + dn + dn

Using the triangle inequality, we get that

and

2 • (2d 21 dn) ,
lim ---------------------= 1

d a —*0 d l l + £/l3 + d l l

2 (2 d n + ^ 31) ,,
lim ---------------------- 3.

d H-+0 dn + dn + dn

Therefore, the lazy adversary always forces the competitive factor to be in the interval

(1,31. □

Now, the question arises whether there exists a randomized 2-competitive on-line

algorithm for the 2-server problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 80

We repeat the process one-by-one, until all the non-lazy moves have been

eliminated. Since the algorithm we consider is 2-competitive against a lazy adversary, it

has to be 2-competitive against any adversary as well. □

4.2.3 Resistive Spaces in the k-Server Problem
Recently, Coppersmith et al. [98,99] very cleverly used Raghavan and Snir's

interesting technique [285] to treat the edge weights in the graph where our servers are

moving as effective resistances in some electrical network, and calculate the transition

probability using the harmonic algorithm in this “inverse" electrical network. The designed

reversible random walks are useful for certain randomized competitive on-line algorithms.

Coppersmith et al. deigned randomized k-competitive algorithms against any

adaptive adversary on resistive spaces with resistive inverses. Resistive spaces include

every metric space for which a k-competitive algorithm has been proven and many more

resistive graphs as well. For example, some of these graphs include:

• 3 node graphs satisfying the triangle inequality [56],

• distances on a line [285],

• tree closure [71],

• uniform graphs [99,142,254,255].

Note that the Euclidean plane has no resistive approximation (see [99], pp. 442)

and that no Hk-competitive algorithm exists for the k-server problem when the metric

space is non-uniform (e.g., it can be shown by establishing lower and upper bounds on the

competitive ratio for the 2-server problem on certain triangles; see [203] for more details).

Coppersmith et al. also showed how to compute a value for each pair of points in

a resistive space such that on a request to a node \), if there is no server on node u, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 81

the server sitting on node Vi services the request with probability proportional to the value

of the edge (Ui, u). This algorithm is simple and memoryless.

The same authors proved the following tight bound for all symmetric cost

matrices:

Any random walk on an weighted (undirected) graph with n-vertices has

stretch factor (or simply stretch) at least n-1, and every weighted (undirected)

graph has a random walk with stretch at most n-1.

They also justified the above results for the cat and mouse game [99], metrical task

systems [66] and k-server problem [255]. Additionally, they derive algorithms for some

non-resistive [98] spaces by approximating the original metric space by a resistive metric

space. The approximation technique yields a randomized 2*-competitive algorithm for

points on the periphery of a circle (i.e., a discrete circle). This is the first on-line algorithm

for the k-server problem on a metric space.

4.2.4 Asymmetric 2-Server Problem

Symmetry of the edge weight of an electrical network is very crucial to the basic

technique used in designing the appropriate random walk. All the work previously done

on the k-server problem dealt with resistive graphs, where symmetry of the edge weights

(costs) could be assumed.

The following question arises: Can we design competitive on-line algorithms fo r

the k-server problem on non-resistive graphs (i.e., no symmetry of the edge weights)?

The answer seems to be that we can no longer find algorithms with a competitive ratio in

terms of the number of servers alone.

In the symmetric case, we have seen that the»e exists a randomized competitive,

memoryless algorithm for any 2-server problem against any adversary (Theorem 4,2) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 82

we found a competitive ratio of exactly 2 against a lazy adversary. In the non-symmetric

case, if we adopt the same strategy, we cannot achieve an expansion factor of exactly 2

against a lazy adversary for large cycles.

Definition 4.2. Let C = (Cy) be the given cost matrix of size n x n. The cycle offset

ratio 'F(C) is defined as the maximum over all cycles CoiAh \>k = Vi) of the ratio

k - 1
y r
* Mi, V i* i

j * i__________
k • 1y c
** Ui ♦ i. I*

i = 1

If we assume the edge costs satisfy the triangle inequality, then 1 ^ H'(C) 5 (n - 1).

Moreover, we have that M'(C) = 1, when C is symmetric.

Theorem 4.3. There exists a randomized, memoryless, 2'¥(C)-competitive algorithm for

the asymmetric 2-server problem against a lazy adversary.

Proof (sketch): It is similar to the proof of Theorem 4.2 for the symmetric case against a

lazy adversary. We find that there are exactly two sets of probabilities (hence, two

solutions) yielding an expansion factor of 2 for all commute times against a lazy f.dversary

on a 3-node graph.

On larger n-cycles (n > 3), the competitive factor is greater than 2 and it is

bounded above by two times the cycle offset ratio of the n-node graph, which can be as

high as n-1. Since the number of vertices is doubled (in the worst case), our algorithm can

be at most 2-n-l rather than 2 (n-1). □

It is not our intention to give the completed proof here, because it is straight

forward and similar to that of the symmetric case by substituting the hitting times Hy of

the old symmetric analysis with the expected “closing distances” Dy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 83

We observe that asymmetry of that edge weight on graphs gives us randomized

on-line algorithms of higher competitiveness (i.e., upper bounds) for 2-server problem.

4.2.5 Non-resistive Graphs and Server Problem

Coppersmith et al. [98] have given an approach for resistive graphs that can be

extended for non-resistive graphs.

We use ergodic random walks (see definitions 3.1) with the advantage that

reversibility of the walk (i.e., symmetry of the edge weights) is not needed to design

randomized competitive on-line algorithms for some previous well known problems (i.e.,

task systems and cat-mouse gam e).

D efin itio n 4 X An M-matrix is simply an n x n matrix A of the form A = a-In - P in which

P is a non-negative matrix and a is at least as big as the largest eigenvalue of P.

Clearly, the matrix P defined in section 4.2 is an M-matrix. The following

Theorem o f Fiedler etal. [143] is an interesting trace-inequal; ?y.

Theorem 4.4. For a non-singular M-matrix A o f size n x n, we have that tr(A~lA T) < n,

with equality holding i f and only i f A is symmetric.

Now let us state a stronger result which generalizes Lemma 4.1.

n

Corollary 4.1. ^ W PXJ H,t s n-1, fo r any ergodic graph, w ith equality holding if and
i .j * i

only i f the graph is resistive (i.e., lemma 4.1).

Proof: Using Theorem 4.4 with P in the place of A, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OF/DE
PM-1 3 '/i"«4" PHOTOGRAPHIC MICROCOPY TARGET

NBS 1010a ANSI/ISO «2 EQUIVALENT

PRECISION8** RESOLUTION TARGETS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Sewer Problem and Algorithms 84

tr(H Pr) = £ ' AP^H.j < n-1. 1
, . , = 1

Now we are ready to show all the result of Coppersmith et al. [99] for k-server

problems on resistive graphs can easily be extended in the case of non-resistive spaces.

We do not intend to state and prove all the results here, because most of them, including

their proofs, are identical to those in [99]. We clearly justify this claim by arguing that the

designed reversible markov chains are the same as that of resistive graph., if w i use the

new technique on non-resistive spaces.

Theorem 4.5. Any random ergodic walk over a directed weighted graph has competitive

factor at least (n-1) / X¥(C), where C - (C„) is a n n x n cost matrix.

Proof: Indeed, the proof is identical to that of Theorem i of [99], wherein the symmetry'

is assumed. I

Theorem 4.6. For any n x n cost matrix C and any transition probability matrix P, the

stretch o f the ergodic walk by P on a non-resistive graph with weights given by C is at

least n-1.

Proof: It suffices to bound the competitive factor over all cycles. This can be extended to

ail paths, with an additive constant such as max C,,. The expected cost per move is
■•J

E = £ W . P . C , , ^ W, P.j H,, < n-1
t . J i . /

by Corollary 4.1.

Now, the expected cost of a sequence of walks (or a walk) through vertices

Ut.\>2 Uk = \)i is simply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 85

k k k

E Vi'D. + 1 < (n-1) £ c

Note that the lower bound is n-1 under symmetry, since H'(C) = 1. The proof of the lower

bound is essentially the proof of Theorem I of [99].

The following theorem about the cat and mouse game is an immediate

consequence of Theorem 4 of [99]:

Theorem 4.7. Let G be any weighted ergodic graph with n nodes. There exists a

randomized strategy with a competitive ratio o f at least in-1) / 'ViC) for the cat-mouse

game on G, and the ergodic walk by the cat achieves a stretch factor {ratio) o f at least

(n-I).

and when C is symmetric ^ (C) = ^ '(C) = 1.

An interesting theorem for the k-server problem on ergodic non-resistive graphs

follows:

Theorem 4.8. Let C be a non-resistive cost matrix on n nodes. I f every submatrix on

(k+lhnodes is ergodic, then there exists a randomized k'¥'(C)-competitive strategy fo r

the k-server problem against an adaptive on-line adversary.

Proof: It is similar to the proof of Theorem 8 of [99] in the case of resistive graphs. D

Lemma 4.3. Any random ergodic walk on a graph with self-loops has stretch o f at least

2n-l, where the costs C„ are not necessarily zero.

Q
Definition 4,3. Let the edge offset ratio 'P 'fC) be max — . Note that ¥ (0 £ ¥ ' (0 ,

•> C j i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 86

The proof is omitted, because it is similar to that of Theorem 7 of [99).

Additionally, Theorem 4.3 can easily be generalized as follows:

Theorem 4.9. There exists a randomized, memoryless k yY t(C)-competitive algorithm for

the k-server algorithm against a lazy adversary on non-resistive spaces. Moreover, there

exists 2k-competitive algorithm (called the k-center algorithm) which is optimal up to a

factor o f 2 among all on-line algorithms for the k-server problem on a bounded non-

resistive space.

The first part of the above theorem is straight forward to prove from the proof of

Theorem 4.3 for the non-resistive spaces in this case. For the second part, we can extend

the proof of Theorem 5.1 [350] for the k-server problem on any bounded non-resistive

space.

An interesting and immediate consequence is the lower bound of (2n-l) / ^ (C) fi'r

any deterministic or randomized on-line algorithm for task systems on non-resistive n-

node graphs. Although the proof is straight forward and similar to that on resistive

graphs, it seems to be considerably simpler when we use ideas from the proof of Theorem

4.7. Specifically, for the deterministic (resp., randomized) case the proof is essentially that

of Theorem 2.2 of [98] (resp.. Theorem 11 of [99]).

We have seen that the Coppersmith et al. approach [99] works for non-resistive

graphs and it can be used to find competitive solutions of the k-server problems against a

lazy adversary. However, the following open question arises: Can a general metric space

be always changed slightly, in a predictable and useful fashion, so that it becomes non-

resistive?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 87

We have no results for the k-server problem in general metric spaces. It would be

interesting to study the cat and mouse game under a wider class of strategies in the case

when the cat is not blind; this would extend the interesting work of Baeza-Yates et al.

[35]. It is believed that a somewhat different random graph approach will solve the k-

server conjecture (where k > 3) for general metric spaces in a randomized environment as

well. Finally, we would like to point out that there are several challenging open problems

for k-server problem (e.g., see [98,99]).

4 J The Distributed k-Server Problem
In the previous sections we have seen the standard setting of the k-server problem

where the communication cost was free, that is, there was a centralized (global control)

algorithm that got the requests for service with no cost and transferred the motions

instructions to the servers.

A more realistic distributed (local control) setting of the k-;«.. .er problem is that

when the information messages to the servers are costly. The problem arises in computer

network of n processors when k identical mobile servers have to be scheduled between the

processors of the network. The objective is to develop on-line algorithms that optimize

not only the total distance the servers travel but also the communication cost incurred for

the transmission of control incomplete information about the requests. This problem is

also related to distributed file allocation problem and to other problems of data

management [26,28,29].

In some special cases (e.g., for the uniform metric spaces) deriving distributed

algorithms from the standard ones is straight forward by choosing a leader that runs the

global-control algorithms and ignores requests on covered points. Generally, the

transmission of any deterministic competitive global-control k-server strategy for any

metric space into a competitive distributed algorithm is too expensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 The k-Server Problem and Algorithms 88

Bartal and Rosen [421 have developed a general translator to make k-server

algorithms distributed and designed poly(k)-competitive distributed algorithms for the

lines, trees and the rings. They also proposed a distributed k-server algorithm which

achieves a competitive ratio of Q(mwc[k, ~j)' fo^iogn ^ a£a*nsl adaptive adversaries for

arbitrary network topologies with n nodes, where D is the ratio between the cost of

moving a server and of transmitting a message across the same distance. The same authors

considered a distributed version of the randomized harmonic k-server algorithm, which

has the best currently proved competitive ratio of 0(C h(1 + ~ max{k, p}-

(logA)-logn)), where Ch is the competitive ratio of the classical harmonic algorithm , A

denotes the diameter of the network topology and ji = max{[logri], [iogA]} which

indicates the size of a unit-length message. Here, it would be interesting to mention that

most of the results for the k-server problems on resistive and non-resistive graphs can

easily be transformed into the distributed environment.

The larger the island o f knowledge,

the longer the shoreline o f wonder.

R. W. Scockman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Combinatorial On-line Algorithms
Heuristic has concerned, with language-dvnamics.

while logic has concerned with language-static.

Imre Lakatos

The aim o f heuristics, o r heuretics. or “ars inveniendi” is to

study the methods and rules o f discovery and invention.

George Polya

There is tremendous amount of literature on off-line optimization problems and

algorithms. This chapter deals exclusively with the combinatorial problems in on-line

manner. Particularly, we study the on-line graph coloring and matching problems as well

as their algorithms. Moreover, we give a very brief presentation of on-line string matching

and on-line flow problem in a network.

5 .1 On-line Graph Coloring

5.1.1 Problem Statement and Related Terminology

The problem o f coloring a graph is that of assigning a color to vertices such that

no two adjacent nodes (bins) receive the same color. A valid coloring of a graph

G = (V, E) is a partitioning of the nodes into color classes such that the vertices of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 90

same color are non-adjaceot. Let \ (C) be the chromatic num ber of a g m h G; that is, the

minimum number of colors used in any valid coloring of G.

A graph (off-line) coloring algorithm receives an input graph G and determines a

valid assignment of colors to nodes. It is well known that the problem of finding a valid

coloring graph which uses the minimum number of colors is NP-hard [156].

We proceed with some definitions and notations which will be used in the section.

An on-line graph is a structure G^ = (V, E, -<), which is also called an on-line

presentation of a graph, where V is finite or countable infinite, and -< is a linear ordering

of V. Let V, = {Oi \>,} denote the first i vertices of V in the linear order -< and the set

G ^= (V„ E„ -<), where E, is the set of edges in V„ for 1 < i < n = IVI.

An algorithm for coloring the vertices of an on-line G^ is said to be on-line graph

if the color of a vertex o, is determined solely by G"̂ . Intuitively, in the on-line version of

the graph coloring problem, the graph is presented one vertex at a time when a vertex is

presented and only the adjacent edges to all already presented vertices are also revealed.

An on-line algorithm has to irrevocably assign a color to a vertex before proceeding to the

next vertex. The goal of on-line algorithm is to minimize the number of colors used in

coloring of the graph.

A simple but important example of an on-line graph coloring algorithm is the First-

Fit (FF) algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 91

Algorithm FF(G)

Assign to each o, of G with the lowest possible color which is

not already numbered to any vertex \) e V j_, adjacent to \),.

Figure 5.1: On-line Graph Coloring Algorithm FF(G).

We use competitive analysis to measure an on-line coloring algorithm A . Let

X.(G) denote the chromatic number that A uses to color G. The performance (or

competitive) ratio of an on-line graph coloring algorithm A , denoted by p^(G), is defined

y (G)
as p^(G) = max— , where G is ranging over all input graphs for a class of graphs C.

On-line graph coloring has applications to parallel process assignment and

register (storage) allocation problems [69,170,278]. Recently, Lovasz et al. used the

upper bounds of on-line coloring algorithms to examine the relative power of determinism,

randomization and non-determinism to search problems in the Boolean decision tree

mode! [248,188].

In the next subsection we consider on-line coloring on some restricted classes of

graphs.

5.1 .2 On-line Interval Graph Coloring

We consider the interval coloring problem as an introductory example of on-line

graph coloring.

A graph G is said to be an interval graph if it is the intersection graph of a family

of intervals along the real line; for example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 92

Figure 5.2: i) Interval representation ii) Interval graph.

In on-line setting of the problem, each request is an interval on the real line and

each action assigns a color to the current request, with no two overlapping intervals

receiving the same color. The cost of a request sequence is the number of colors used. Set

w(G) = maxH'(I) the clique number of the interval graph G; that is, the maximum width
1*0

assigned to any interval ranging over all input intervals of G.

Kierstead and Trotter 1217] give an on-line algorithm for the interval graph, which

is a modified FF(G) coloring algorithm.

Algorithm On-lineColor (G, w)
begin

As each interval l€ G arrives it is assigned a positive integer
w(I) called the width of interval I and a color;
If I does not intersect any previous interval of width 1. then

w(I) := 1;
Assign any color to I, among those received for its width,
that has not been assigned to any previous interval that
intersects I;

else
w(I) := the set of the least j > 1 such that I does not
intersect more than two previous intervals of width j;

Assign three colors for each interval of width j;
endif

end.
Figure 53: On-line Interval Coloring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter $ Combinatorial On-line Algorithms 93

Kierstead and Trotter [217] showed that the above on-line algorithm colors any

on-line interval graph with at most 3-w(G^) - 2 colors. Arguing by induction on w,

one shows that G ^can be partitioned on-line (just be greedy) into a maximal graph

G*"* with clique size w - 1 and an induced subgraph IT* of G~* with maximum degree 2.

Thus, G can be colored on-line using 3 (w - 1) - 2 + 3 colors. Moreover, it can be shown

by means of an adversary argument that no on-line algorithm can do better. Therefore,

Kierstead-Trotters on-line coloring algorithm achieves an optimal performance ratio of 3

on interval graphs.

Finally, we would like to point out that the interval coloring problem can be seen

as a scheduling one, in which each interval represents the time span of some task and the

color represents the processor assigned to execute the task.

5.1J On-line Coloring on Special Graphs

The on-line coloring has been extensively studied for special graph classes. The

bipartite graphs can be colored on-line using O(log n) colors [248]. The previous best

lower bounds known were £l(log n) for n-node trees (since trees are also chordal graphs)

and 0(logk n) for k-colorable graphs, where k is fixed [248],

Kierstead [214] has proved that FF algorithm has a constant performance ratio on

interval graphs. Gyarfas and Lehel [164,165] have also shown that FF achieves a

constant performance ratio on split graphs, complements o f bipartite graphs, and

complements o f chordal graphs.

Recently, Irani [188] examined on-line coloring for the inductive graphs. A graph

G is d-inductive if its vertices can be ordered (called an inductive order) in not necessarily

such a unique way that each vertex is adjacent to at most d higher-numbered vertices. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 94

inductive order of G gives an inductive orientation for the edges of the inductive graphs

from the higher numbered vertices to the lower numbered ones.

Irani [188] (also Karloff, independently) showed th^* FF on-line algorithm uses

0 (d log n) colors to color a d-inductive graph G with n = n(G) vertices. This yields that

any on-line coloring algorithm for d-inductive graphs has a performance ratio of Clilog n).

The upper bound on the chromatic number of colors used yields an upper bound on the

performance ratio for graphs, where d and the chromatic number x are closely related. For

example, planar graphs are 5-inductive and chordal graphs are x(G)-inductive, which

implies that both of them have a performance ratio of Odog n).

When the on-line model is slightly altered by allowing the algorithm to see the next

l> 1 vertices before assigning a color to the present vertex, we say that the on-line

coloring algorithm has a weak lookahead o f size I.

Irani [188] showed that even with a weak lookahead of size —- — , an on-line
logn

algorithm still requires Q(d- log n) colors to color a d-inductive graph. For a weak

lookahead of size I > —— we can do better, because we can on-line color a d-inductive
logn

graph in 0(min{d-logn, ^ -p}) colors.

We now use the new on-line model of strong lookahaead, which has practical and

theoretical importance. An on-line coloring algorithm has a strong lookahead o f size I if it

has a weak lookahead of size I and at step t + / at least t requests have been answered,

where t is an integer > I. This on-line model is also called on-line with a buffer o f size I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 95

and it is more powerful (as an algorithmic feature) than the weak lookahead model

improving slightly Irani's bounds.

Theorem 5.1. I f G is a d-inductive graph on n nodes, then G can be colored on-line with

d * ftstrong lookahead o f size I using 0(min{r/ • logn, — -}) colors fo r 1 £ l £ t - l and t > 2 an

positive integer.

Proof: The proof is similar to that of Theorem 8 in [188).

If d- logn < (d + 1)— this ignore the strong lookahead and use FF algorithm

to color a d-inductive graph. By Theorem 6 [188], FF uses 0 (d tog n) colors.

If J log n > (d + 1)—— , then divide the nodes into — consecutive nodes of
6 t - l t - l

the inductively oriented graph. The algorithm can see the d-inductive subgraph induced by

the nodes in each group before having assign a color to the first node in the group.

Therefore, a d-inductive graph can be colored using at most d + 1 colors for every group.

Totally, at most (d + l)—— colors are used. The above bound is asymptotically the best
t - l

possible and it can be shown with a similar way as in the Theorem 9 of [188]. □

We have seen that FF coloring algorithm does well on some special graph classes,

but it does quite poorly in general. Again, we conclude that the point at which (weak or

strong) lookahead becomes an advantage is quite high for on-line coloring as we have

already seen for paging problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 96

5.1.4 On-line Coloring on Hypergraphs
A hypergraph H is a collection of edge subsets E |, E2 ,..., E, of a set of vertices

V = { l , . . . , n } . A k-hypergraph is a hypergraph where each edge set E, contains exactly k

vertices.

Let m(k) be the largest 5 such that each &-hypergraph with s edges can be

2-colored. Erdos [352] has shown that

2k*1 < m(k) < k2-2k+1

These bounds are not constructable (i.e., algorithmic) and show that all k-hypergraphs

with fewer than 2k'* edges are 2-colorable, but if the number of edges is greater than

k2-2k+l, then there exists a k-hypergraph which has no proper 2-coloring.

Unfortunately, the general problem of 2-coloring hypergraphs is reducible to set

splitting problem and thus, it is an NP-complete [156]. We instead find 2-coloring of

hypergraphs restricted by size and degree.

We consider the problem of on-line coloring for k-hypergraphs. Let f(k) be the

largest s such that all k-hypergraphs with s edges can be 2-colored in on-line setting.

Aslam and Dhagat [14] have shown that an on-line coloring adversarial strategy exists, it

is so called two chip game, which achieves the following bounds

2‘-' < / (*) < *(3 + 2V2) =

i+Vs
where 9 is the golden ratio — - — .

In this case, the upper bound demonstrates an inherent weakness of on-line

algorithms against any adaptive adversary. They stated an interesting open problem :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 97

construct an on-line strategy to achieve a better upper bound for 2-coloring any k-

hypergraph with respect to two chip adversarial game or any other strategy.

This problem can be easily solved using a simple modification of the randomized

adversarial algorithm [1*9]. Therefore, there exists an on-line adversarial algorithm for

any on-line 2-coloring algorithm A and every s > k2- 2*+/, produces a k-hypergraph with s

edges which a fails to 2-color. This algorithm runs on-line in Q(; — s) time
(logn)

complexity and is 0 (1)- competitive against any adaptive on-line adversary.

5.1.5 On-line Coloring on General Graphs
There has been a let of work on on-line graph coloring. For example, Lovdsz et

al. [248] give an on-line coloring algorithm for general graphs that achieves a

performance ratio of 0 (n/ log*n)1, which slightly improves the worst possible performance

ratio o f o(n), where n is the number of vertices.

Hallddrsson and Szegedy [169] show that for every deterministic on-line coloring

algorithm there is a k-colorable graph with k-2k'1 vertices on which the algorithm uses 2k-l

colors. This implies a f2(— - —;) lower bound for the performance ratio of any on-line
(logn)

algorithm on general graphs. In the randomized case, they show that the above results

hold within a factor of k. This randomized on-line coloring yields a lower bound of

Q(— - —r) performance ratio. Additionally, they show two optimal lower bounds on the
(logn)3

0(~) approximation of both deterministic and randomized on-line coloring with

lookahead of size / = Q(/og3n).

1 We remind that log*n = min[i; log(,)n S 2), where log(,)n = log(log0 l’n) for each i e Z*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 98

Definition 5.1. A maximat partial greed s-coloring of a graph G is the assignment of the

nodes into a fixed number of greedily color G with s colors, leaving out vertices that

cannot be colored. The set R of the uncolored vertices is called the residual set, while the

set of vertices that have been assigned the same color by a maximal greed 5-coloring is

defined as a greedy color class.

Maximal partial coloring can be achieved sequentially by a natural heuristic: find a

node of maximum degree, recursively color its neighborhood, and iterate this procedure

on the remaining graph. This is essentially the method of Wigderson [342] and can easily

be found via the FF algorithm which assigns a vertex to the first compatible color class (if

one exists).

In order to describe the algorithm let the greedy color classes be Cj, C i ,C*.

Consider a color class C, and denote the vertices in this color class to be \)i Vi, where

\)i -< -< Mi. We associate the first vertex in C, to which it is adjacent with every

vertex in R. This partitions R into Bi Bt blocks. We define a function S(n,%) =

min{[2xn(x'2*x' l) (/ogn)lAx l’l, n} that determines the number of color classes that we use.

Now, we describe Vishwanathan s algorithm:

Algorithm Online-Color 1(n,x)
begin

if (x ^ 2), then BipartiteColor(G)
{* Algorithm BipartiteColor{Q) uses at most 4 logn colors [248] *)

else
Set s S(n, X)'.
Chose a random integer r uniformly from {1,.... 5];
while (there are no more vertices) do

if the number of vertices in the partition exceeds s, then
get the next vertex x> in the partitioning class;
if \) can be colored using the greedy set of colors {1,..., s], then

color the vertex greedily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapters Combinatorial On-line Algorithms 99

else {* \> is in the residual set R *}
Determine which block B of the partition of the vertex falls into;
Input the vertex to the copy of Online-colorl corresponding to B\

endif
Online-Color 1 (s, y - 1);

endif
end {* while *}

endif
end.

Figure 5.4: Vishwanathan's Randomized On-line Coloring Algorithm.

Indeed, when k = 2 the problem is reduced to bipartite coloring which is fairly

straightforward sequentially, in parallel, and in on-line fashion.

Theorem 5.2. The number o f colors used by algorithm Online-Color I (n,x) on

X-colorable graphs is at most s(n, y j (see [3371).

Proof: Let A(G, n, x) denote the number of colors the on-line algorithm uses in total to

color a x*colorable graph G on n vertices. Thus, we want to show that A(G, n, x)

£s(n, x), where s(n, x) = (x2* I n**'2**'0 (/o^n)1**'0 for X - 2, which can be r.oved by

induction on x- □

Therefore, Vishwanatan’s algoritf. t has a performance ratio of 0 (n / (log n)'7*)

against an oblivious adversary. This result shows that randomization helps in on-line graph

coloring.

Very recently, HalUidrsson [170] modified Wigderson's algorithm [342] or the

deterministic Vishwanatan's off-line algorithm to improve the performance ratio to

Ofn I logn). The sequential (off-line) coloring algorithm finds a maximal partial coloring,

partitions the remaining vertices around the smallest color class and recourses on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 100

relatively few sub-problems. The recursion stops at bipartite graphs, otherwise if the

chromatic number x of G is too large with respect to the size of the graph, we settle on

the trivial coloring of one color per vertex. Thus, the pseudo-code of the algorithm

follows:

Algorithm Offline-Color I (G, k);
begin

a(n, k) := (n / (k - 2))(k * 2) / <k * l) .
if (k < log n), then BipartiteColor(G}
else if (k > log n), then assign each vertex a different color ;

else
ResidueNodes := MaximalPartialColor (G. G (n, k));
Find the smallest greedy color class, and let w i wp be its nodes;
Partition the ResidueNodes into Ri , . .., Rp such that nodes in R; are
adjacent to w ,;

for i = 1 to p
Offline-Color 1(R„ k - 1)\

endif
end.

Figure 5.5* An Approximate Off-line Coloring Algorithm.

We can easily prove by induction on k and with a similar way as in Theorem 5.2

that the number of colors used by the above Offline-Color7(G, k) algorithm on

k 1
k-colorable graphs is at most rk ^ /o -n ■n<fc~2W(t"1>. So, our algorithm achieves a

(k 2)

performance ratio of O(n0c - 2) / (k - 1) ̂ whjch is maximized for k = logn. Therefore,

algorithm Offline-ColorI(G, k) has a performance ratio of 0 (n / log n).

Haldorsson [162] constructed the first parallel coloring algorithm with the same

non-trivial performance ratio of 0 (n / log n) and complexity time 0((log4n) log log n)

using the above sequential 0off-line) coloring algorithm. He just substituted the sequential

MaximalPartialColor (G, G(n, k)) with the following parallel one:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 101

Algorithm MaximalPartialColorl(G, x);
begin

Construct the following graph G ' on (nx) vertices (see (170]):
1 2

Make x identical copies of G : G , G G x;

(l) / » V 1) € £ (G lf t ‘ = 0TJ ~ 1 and ^ €
I M I S (G 1; {* Maximal Independent Set o fG '. *}

X

G i := 10 G 1; ResidueNodes := G — (J C j ;
■ «i

Rerum the greedy color classes {C,} and ResidueNodes;
end.

Figure 5.6: A Parallel Maximal Partial Coloring Algorithm.

Next, we convert Offline-Co\otl algorithm into an on-line algorithm. The

algorithm assigns a color only to the formal variable x> (a vertex) in each invocation, while

updating a static data structure called coloring tree, which is layered into chromatic levels

(see [170] for more details).

Algorithm Online-Color2(T, k, u);
{* Assign a color to the vertex x>. *}
(* T is a k-colorable tree. *}

begin
if (k £ 2), then

BipartiteColor(T, o)
elseif (FF(J, k, d) is not sufficient), then

choose some node \)j adjacent to t) in the partitioning class;
Online-Color2(Rj, k - 1, u);

endif
end.

Figure 5.7: Halddrsson’s Randomized On-line Coloring Algorithm.

This approximate, randomized, on-line coloring algorithm has a performance ratio

of 0 (n / log n), which can be proved with a similar proof as in the off-line case. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 102

addition, Haldorsson's formulation [170] showed how to apply the parallel coloring

algorithm to obtain an NC approximation algorithm for the independent sets of size

Q (nU(k l)) in a k-clique free graph with an independence number greater than

Unfortunately, the processor complexity of removing the k-cliques grows as fast as nk.

We conclude this section summarizing the upper bounds of the performance ratios

of the on-line graph coloring algorithms shown the literature. Thus, a challenging open

problem is to improve any non-optimal bound in the following table:

On-line Graph Coloring Algorithms and their Performance Ratios

Perform ance ratio G raph Source

0 (1) Split graphs [164, 165]

0 (1) Complement of Chordal [164, 165]

0 (1) Complement of Bipartite [164, 165]

3 Complement of Tree Bipartite [164, 165]

3 Interval [215]

o(n) Any graph [248]

0 (n / log*n) Any graph [248]

0 (n / (log n)2) Any graph [169]

0 (n / (log n)/a) Any graph [337]

0 (n / log n) Any graph [170]

O(log n) Bipartite [164, 165]

Ci(log n) Tree Bipartite [164, 165]

O (log n) d-inductive [188]

O (log n) 5-inductive [188]

O (log n) Chordal [188]

Table 5.1: Performance Ratios of On-line Coloring Algorithms for Graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 103

5.2 On-line Graph Matching
In this section, we present on-line minimum and maximum matching problems for

both unweighted and weighted graphs. In particular, we apply the dual bounding

technique to simply reanalyze the weighted matching algorithms and examine the general

applicability of this technique.

5.2.1 Off-line Problem Statement and Algorithms
Matching and related problems have been studied extensively in the contexts of

both sequential and parallel computation.

Given a graph G = (V, E), a matching M is a subset of the edges such that no two

edges in M share vertices. The problem is similar to that of finding an independent set of

edges. In the minimum matching (min-matching, for short) we wish to minimize I Afl. In

contrast, we maximize IM I for the maximum matching (max-matching) of weighted

graph.

We first need to defira some standard terms and technical results, before studying

the on-line setting of the problem.

• A bipartite graph1 G = (U, V, E) has E c U x V is the set of nodes with

U n V = 0 .

• A Perfect matching is a matching such that each vertex adjoins exactly one

edge.

In bipartite graphs, we must have IUI = IVI in order for a perfect matching to

be possibly exist

• The cost o f matching in a weighted graph is the sum of the weights of the

edges in the matching.

1 In the following, as commonly done, we refer to the set U as "the boys" and the set V as “the girls"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 104

• An one-sided assignment (or assignment, for short) is a perfect matching in a

bipartite graph. An abusing terminology considers that a bipartite graph G =

(U, V, E) with vertex set U u V and edge set E c U x V has I u l * I v |; we

also call a matching of size min { IUI , IVI } an assignment.

• The sum of the weights of the vertices assigned to a vertex \>e V is referred to

as the load o f vertex v>. Clearly, if a perfect matching exists, the maximum load

equals the maximum weight

• A metric graph is a complete bipartite (or complete, in short) graph with

symmetric edge weights satisfying the triangle inequality.

It is not difficult to prove that computing an optimal solution in the off-line

assignment is NP-complete for arbitrary weights. (This is done by reduction to the

Knapsack problem [237,238]). However, if the weights are all equal, then an optimal

solution can be computed in polynomial time by reduction to Maximum Flow Problem

[161].

We consider The following three off-line (i.e., standard) matching algorithms:

• O ffline-M IN : An algorithm that derives min- weight perfect matching [326].

• Offline-MAXl : An algorithm that produces a max-weight perfect matching, assuming

that the weights of edges are non-negative [100, 237].

• Offline-MAX2 : The greedy heuristic for max-weight matching of graph G [20]:

Algorithm Offline-Max2;
begin

M := 0 ; T : = G ;
while E(D * 0 do
begin

Choose a maximum weight edge e = (u, \>) e £ (0 not adjacent to any
edge currently in the matching M.
T := T \ (u, v); {* T \ (u , \» denotes the subgraph induced by the vertex

set V \ [u, d] *}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 105

M : = M U { e) ;
end
output M

end.

Figure 5.8: A Maxlmum-welght Off-line Matching Algorithm.

5.2.2 Duality Analysis of Weighted Matching Algorithms

The dual bounding technique1 can be used to more easily reanalyze the weighted

matching algorithms.

The dual problem2 of finding an assignment in a weighted, bipartite graph with

edge weights is to find a maximum-cost potential such that the weight of any edge is at

most (for the upper bounds) or at least (for the lower bounds) the sum of the weights of

the endpoints.

Therefore, in order to find the upper (resp., lower) bound in terms of a dual

transformation, we modify the edge weights d(i, j) to d(i, j) - 11; - flj, where n k denotes

the weight of vertex k. This reduces the cost of the matching by at most (resp., at least)

^ n t , but leaves the cost non-negative.
*

In order to provide an example, we apply this technique to show the performance

ratio of the last matching algorithm.

Theorem 5.3. In any non-negatively weighted graph, the Offline-MAX2 matching

algorithm has a competitive factor o f 2.

1 The dual problem allows a larger class of solutions, and possibly tighter bounds, see [272, pp. 225].
2 See subsection 4.1.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 106

Proof: If the greedy algorithm adds an edge (i, j) to the matching, let FI, = I l j = d(i, j);

otherwise IT = 0.

If (i, j) is a matched edge, we have that d(i, j) £ max{ n „ 11,} <* IT + rij; otherwise,

suppose i was matched first to k, then d(i, j) £ d(i, k) = 11*.

The cost of the matching is £ n , . Since £ n , is an upper bound of the
l I

maximum cost of matching, the competitiveness of the algorithm is 2. G

5.2 3 On-line Unweighted Matching Algorithms
We consider the on-line version of the problem of constructing a large matching in

a bipartite graph. In the on-line setting, the boys (the vertices of U) appear either

one-by-one or in groups, in some arbitrary order. As each boy answers, the algorithm is

told the disclosure of its identity, its weight (only, in the weighted matching) and all the

edges incident to it. The on-line algorithm must assign at most one girl from V to each

boy (vertex) of U; of course, the algorithm is not permitted to choose two edges incident

with the same girl.

We use the competitive analysis to measure the performance of on-line algorithms

for the matching problems. Here, we would like to note that we consider the minimal

competitive ratio to account for the case we deal with a maximization problem rather than

a minimization one. In the deterministic case, the adversary constructs the graph and

assigns the weight in advance; thus, it can construct the worst possible sequence. In the

randomized environment we first assume an oblivious adversary.

Below, we consider both deterministic as well as randomized on-line matching

algorithms for unweighted bipartite graphs and derive their competitive ratios for either

case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 107

The first competitive ratio achievable by a deterministic algorithm for the bipartite

matching problem is 1/2. In a bipartite graph one can easily force any deterministic

algorithm to match only half of the boys, even though there exists a matching that covers

all the boys. For example, let us consider the following simple deterministic algorithm:

Algorithm Online-D-BMll;
Present a boy who is adjacent to two girls; whichever girl the algorithm
chooses, present a second boy who is adjacent to chosen girl but not to the
other one.

Figure 5.9: On-line Deterministic Bipartite Matching Algorithm.

We can also show that the above result applies even for randomized algorithms

against an adaptive on-line adversary using the following more complicated algorithm,

which is referred to as ranking algorithm [211].

Algorithm Online-R-BM2;
For the first n/2 girls, the adversary adds edges between the new vertex and
any boy that has not been matched by either the adversary or the algorithm.
The adversary adds the random one of these edges to the matching.

Figure 5.10: Ranking Algorithm.

If T(n) denotes the number of edges in the intersection of the adversary’s and the

algorithm’s matching after the first n/2 girls have arrived, then E(T(n)) = O(log n).

Clearly, the adversary matches every girl, a id the on-line algorithm matches at most

n/2 + T(n) = n/2 + O(log n) boys.

Karp et al. [211] presented the following randomized on-line algorithm for

bipartite matching against an oblivious adversary.

1 On-line Deterministic, Bipartite, Matching Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 108

Algorithm Online-R-BM3;
Choose a random order gi, g2 g„ of the n girls, and make the first boy
adjacent to all the girls, the second boy to g t, g2 gn-i and make the ith
boy adjacent to gtf g2 gni.i, in general.

Figure 5.11: Karp’s Randomized Bipartite On-line Matching Algorithm.

The above simple randomized algorithm achieves an asymptotically tight bound of

n (l - 1/e) + o(n), where e is the base of natural logarithms.

This adversary strategy limits every' randomized on-line algorithm to a competitive

ratio of 1- j and illustrates what seems to be a rather general phenomenon:

randomization helps considerably against oblivious adversaries, but not against adaptive

adversaries. A good exercise for the interested reader is to show that this phenomenon

also holds for the ski rental and the update list problems.

5.2.4 On-line Assignment Algorithms

The assignment problem (i.e., the problem of finding a bipartite matching of

minimum weight) is one of the archetypal problems in algorithmic graph theory and in

combinatorial optimization [100,272].

The natural on-line version of the assignment problem in a weighted bipartite

graph G = (U, V, U x V) is defined as follows: the vertices of U appear in some order.

When a vertex appears, the cost of all adjoining edges are revealed, and some such edge

has to be added to the matching. We explore the on-line assignment problem in weighted

bipartite graphs for both deterministic and randomized environments and derive exact

competitive ratios for either case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 109

Khuller et al. [213] and Kalyanasundaram et at. [196 198] independently

considered the following strongly competitive deterministic algorithm for the min-

matching assignment:

Algorithm Online-D-PERM1:

Let Af, be the on-line matching computed by the algorithm after arrival of
vertex e V and P, denote the matching (called partial matching)
constructed by the algorithm for the first i service. Initially, M0 and N0 are
empty.
Step 1: Upon arrival of u, € V compute the off-line matching N, in graph
Gp̂ . = (P,-, V, Pj x V) (N, is called the minitnum matchng weight on P;).

Without loss o f generality (w . I. o . g.), we assume that the exclusive - or
Nj © Ni-i consists of a simple odd length augmenting path from o, to a
vertex u* e U (e.g., see [213], lemma 2.1 for more explanations).
Step 2: The vertex u, will be free in Afj.i; match u, to u, to obtain Af,-.

Figure 5.12: A Deterministic Permutation Algorithm for A/in-matching Problem.

The competitive analysis of the algorithm, using the dual bounding technique, is a

little more complicated.

Theorem 5.4. Algorithm Online-D-PERM 1 is at least (2-n-I)-competitive on any 2n-

node, metric, bipartite graph..

Proof: The odd edges of the path (if any) form a subset of the current min-weight

assignment with weight no more than the current potential.

Using the dual bounding technique, we find that the augmenting path N, © N,.i

consists ot one edge. Thus, the weight is bounded by 2 i - \ the weight of the current

potential, since the weight of the potential is only increased during the course of the

algorithm, after i £ n vertices are presented. So, using the fact that N,.i £ N„ Vi 5 n, we

get that Pi £ (2 (i -1) - 1) N,., + 2 Ni (2i -1) , Vi <2 n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 110

Therefore, this on-line greedy algorithm is at least (2-n - l)-competitive and needs

0 (nz) time complexity to find a minimum partial bipartite matching at each decision step.

□
Kalyanasundaram and Pruhs [198] proposed another deterministic on-line greedy

minimum matching (so-called Nearest neighbor) algorithm which achieves a performance

ratio of (2° - 1) and needs O(n) time at each decision step, in any 2n-node metric space. If

both of his algorithms are combined, we can easily get a simple deterministic greedy

algorithm for solving the on-line minimum matching problem when the points are

constrained to lie on Euclidean space.

Algorithm Online-EMM;
Let U be a set of points and V = {\)i, \)2,.........\)n} be a set of points on
Euclidean space.
begin

M := 0 ; {* the matching M is initially empty * }
Input (U);
for i = 1 to n do

At the arrival of \)j e V , add the shortest path between x>, and the
unmatched points in U to matching M.

endfor
return (M);

end.

Figure 5.13: An On-line Minimum Matching Algorithm with n points Euclidean Space.

This Online-EMM algorithm has a tight competitive ratio of (2“ - 1), because of

the metric space and the worst case data structure described in Theorem 2.6 of [196].

Now, we present a simple, deterministic on-line assignment algorithm:

Algorithm Online-D-AS I ;
Upon arrival of a vertex u € U assign it to a neighbor with the current
minimum load (ties are broken arbitrarily)

Figure 5.14: A Deterministic On-line Assignment Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 111

Theorem 5.5. Online-D-ASI achieves a competitive ratio o f [”log nl + 1.

Azar et al. [33] showed that the competitive ratio of any on-line bipartite

assignment algorithm is at least [log (n + 1)1.

We combine the above deterministic algorithm with the randomized

Online-D-BM3 to get the following randomized, assignment on-line algorithm.

Algorithm Online-R-PERM2;
Choose a random permutation Tli of the vertices in V, V 1< i < n.
Upon arrival of vertex x>, e V, let denote j > 0 the minimum load among
Uj’s neighbors of V. Assign vertex u* to the highest priority according to
nj+1.

Figure 5.15: A Randomized Permutation Algorithm.

Again, Azar et al. have shown that the expected competitive ratio of the above

algorithm is at most k = 1 + ln(n), where n = IUI = IVI. They also proved that the

competitive ratio of any randomized on-line assignment algorithm is at least k - 1 = ln(n).

5.2.5 On-line Maximum Matching
Kalyanasundaran and Pruhs [198] consider the on-line algorithm of maximum

weight bipartite matching problem. They require the bipartite graph being complete with

the positive weights and satisfying the triangle inequality.

Algorithm On,:ne-D-MAX3;
Upon arrival of a boy (i.e., a vertex u e U), add the max-weight edge that
adjoins the presented boy, but is not adjacent to any edge already in the
matching.

Figure 5.16: A Deterministic On-line Max-matching Algorithm for Metric, Bipartite Graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 112

We apply again the dual bounding technique to find the optimal competitive ratio

of the maximum weighted matching algorithm.

Theorem 5.6. In any metric, bipartite graph, the Online-D-MAX3 matching algorithm

achieves an optimal competitive ratio o f 3.

Proof: If Algorithm Online-D-MAX3 adds an edge (if j) to the matching, let IT = 2d(i , j)

and rij = d(i, j).

If (i.j) is a matched edge, we clearly have that d(i,j) < IT + IT; otherwise,

suppose j was presented and matched to k. If i was not yet matched at the point, then

d(i, j) < d(j. k) = IT; otherwise, suppose /' was already matched to h.

When h was presented, k was not yet matched, so d(k, h) < d(i, h). Thus, we

haved(i . j) $ d(i, h) + d(h, k) + d(k, j) S 2-d(i, h) + d(k, j) = IT + IT. Therefore, the

weight of the matching is n . / 3 . Since ^ n . is an upper bound on the maximum
i i

weight of a matching, the performance ratio of the considered algorithm is 3. [I

All previous work provides analysis only for metric, bipartite graphs with

restricted positive weights. In contrast, Bernstein and Rajagopalan [55] propose a variant

on-line maximum matching algorithm which is 4-competitive on general graph with

arbitrary weights.

In order to describe this algorithm we first need some definitions and conventions.

Given a graph G = G (V , E) with the edge set E c ^ j - An instance of the on-line

matching problem, consists of G plus some ordering -< on V; if a vertex i arrived earlier

than j we say i -< j„ We refer to the vertex that just arrived as \>. Let Y be the set of

vertices that have not yet arrived plus \) and let X be the set of vertices that have not yet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 113

matched but have arrived in the past. Let denote by (X, Y) = B the bipartite graph on the

vertices X and Y with weight as have been given to us. We let m((3) be the weight of

maximum matching Af(B) on B.
d t f

Next, we define a potential 3(y) = m(P) - m(B - {y}) which is associated of that vertex

and let also define a global potential function
d t f

= m(p) + 2-{weight of the edges that have matches so far},

which is exactly the maximum weight of the matching and measures the efficiency of the

current service.

We state the on-line maximum matching algorithm using u to denote the vertex

that x> is matched to (if one exists), in some such matching M.

Algorithm Online-D-WMM;
Examine only two options:
• MATCH option: Match \) to u.
• NONMATCH option: Add \) to X.
Pick the option that minimize <X>.

Figure 5.17: An On-line Maximum Weighted Matching on General Graphs.

We use conductive analysis and the dual bounding technique to find the

competitive ratio of this algorithm.

Theorem 5.7. Algorithm Online-D-WMM has a (minimal) competitive ratio o f 4 on

general graphs with arbitrary weights.

Proof: We use the dual bounding technique in a similar way as in Theorem 5.3. Consider

any edge (i, j) in the graph. We get that the global potential function has to be at least

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter S Combinatorial On-line Algorithms 114

when i and j arrive. Thus, <J>fiail 2: / 2 = ^-IMI for any matching M in the
2 (i. jM M 2

graph. Now, since Od.,.1 = 2-{the weight of the algorithm’s matching), the algorithm has

a worst case performance of at lest 1/4 (i.e., a competitive ratio of at least 4). □

Bernstein and Rajagopatan [55] proved that any deterministic, on-line (maximum)

weighted matching algorithm has a competitive ratio of at least 3. We can easily extend

the proof of Theorem 3.2 of [196] to get the same result on general graphs with arbitrary

weights.

The same article [55] presents the following deterministic on-line max-matching
3

algorithm which achieves an optimal competitive ratio of at least — for unweighted

graphs.

Algorithm Online-UMM;
1. Compute T, the new B that would result if NOMATCH was

chosen.
2. If m(B) > m(T), then MATCH x> and u (if u exists), and

DISCARD D otherwise.
3. Otherwise, NOMATCH: set B := T.

Figure 5.18: An On-line Maximum Unweighted Matching on General Graphs.

An interesting open question is whether we can bridge the gap between the lower

and upper competitive bounds of an on-line max-weight matching algorithm on general

graphs. We know that randomization has been shown to be very helpful in designing on

line algorithms with better competitive ratios. Clearly, we can see that any randomized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 115

algorithm cannot achieve a better competitive ratio than — in the unweighted case by
4

using an extension of the competitive analysis through Yao's lemma [344].

Another interesting open problem comes up: Can we design randomized

algorithms against oblivious or lazy adversaries (even harder) with better competitive

ratios ?

S 3 Specific Combinatorial On-line Problems
In this section we briefly discuss two specific problems, the String Matching and

the Network Flow problems in on-line setting.

53.1 On-line String Matching
The classical (off-line) string matching problem detects occurrence of a particular

substring (called a partition) in another string (i.e., the text).

In on-line setting, the on-line string matching tests of each prefix of the input

string is superprimitive (i.e., it is covered only by itself) as soon as that the prefix is

revealed.

Breslauer [67] recently proposed an on-line algorithm which works under the

general alphabet assumption where the only access to the input string is by comparisons of

pairs of symbols. This algorithm is simpler and more effective than the (off-line) algorithm

of Apostolico et al. [353] and uses the pattern processing steps of the Knuth-Morris-Pratt

string matching algorithm [100] only once. Breslauer’s algorithm scans the input string

S(i . „] one symbol at a time and uses linear auxiliary space. The new algorithm takes O(n)

time and at most 2 n comparisons of input symbols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 116

It is not our intention to describe this algorithm here, but we would like to point

out that there are some interesting open problems if we consider variant on-line models for

the on-line string matching.

53 .2 On-line Network Flow
Very recently, Phillips and Westbrook [280] used the method of competitive

analysis to study the on-line load balancing problem and describe an efficient scheduler

that uses only a small number of reassignments to reduce its competitive ratio.

They then applied this problem to compute the maximum flow in a network. In

addition, they used an on-line game, the kill game [76], on a bipartite graph G = (U, V, E)

as a fundamental step in improving the network flow algorithm. They proposed a simple,

efficient and deterministic on-line algorithm for network maximum flow, which runs in

CXnt n /ogmM n + n2 log 2 + e n) for any constant e, where IVI = IUI = n and IEI = m.

5 3 3 On-line Scheduling
Classical (or clairvoyant) scheduling theory of tasks (i.e., the characteristics of the

tasks are known a priori) is a basic problem in computer science and has been studied

extensively [159,238]. This problem is often inherently on-line in nature and in many areas

of operating systems (e.g., time-sharing operation systems [323]); one needs algorithms

to schedule a sequence of tasks where each task has to be processed before the future of

the sequence is determined. Most research on on-line scheduling concerns the problem of

minimizing the length makespan of schedule [41,158,202,311],

There has been some recent work on non-clairvoyant scheduling [8,29,39,259]

using the competitive analytic approach. Some of these problems are the following;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 117

• On-line task scheduling on a single machine where tasks have fixed start and end

times [343].

• On-line scheduling in real-time systems [116,227,228].

• On-line scheduling on parallel machines with different network topologies of n

processors [44,135,311].

We summarize the upper and lower competitive bounds for scheduling on a

parallel machine with a specific network topology under the assumption that only running

times are given dynamically and that there are no dependencies among tasks (in the case

o f dependencies, see [134]).

Network topology U pper bound Lower bound

7Vo-dimensional mesh 0 (./log log n) C lijio g lo g n)

PRAM 2- 1/n 2- 1/n

Hypercube 2- 1/n 2- 1/n

One-dimensional mesh 2.5 2- 1/n

d-dimensional mesh 0 (2d d /ogd-^loglogn) + 2* (d logd)4 Cl i j log logn)

Table 52: On-line Scheduling Algorithms on Parallel Machines and their Competltiv Bounds.

A problem closely related to on-line scheduling is on-line load balancing

[15,30,31,280], where an algorithm has to assign a sit of tasks to processors and the

objective is to minimize the maximum processor load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Combinatorial On-line Algorithms 118

We list below some different on-line problems which have searched very recently:

• On-line bin-packing [73];

• On-line knapsack problem [358]; and

• On-line routing for virtual circuits [15,16,23].

Generally, there are some fundamental questions which remain open in on-line

scheduling:

• How can on-line models be extended to serve practical scheduling even better?

• Can we design randomized, competitive, scheduling algorithms and show that

randomization is a powerful tool for on-line sched *'ing7

The great tragedy o f science is the slaying

o f a beautiful hypothesis by an ugly fact.

T. H. Huxley

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6
On-line Algorithms in Computational
Geometry

Science is nothing more than a searching.

Albert Einstein

This chapter is concerned with the incremental and on-line applications in

Computational Geometry. Particularly, we consider the on-line navigation problem in an

unknown geometric environment and the on-line (visual or geometric) routing problems

for planar graphs under the model of fixed graph scenario.

6.1 Introduction

Computational Geometry studies the design and analysis of algorithms for solving

geometric problems. It is a recent field of Theoretical Computer Science, that has

developed rapidly since it first appeared in M. I. Shamos ’ thesis [314] in 1978. The field

has already reached a high level of research sophistication and it was important to develop

more practical algorithms avoiding the use of complicated data structures in order to

design efficient geometric algorithms.

Randomized incremental algorithms introduced to the field by Clarkson [91] in

1985 and have been successfully applied to a variety of geometric problems

[266,267,331]. These algorithms are simpler or asymptotically more efficient in practice

rather than those previously known. Randomization helps in design and analysis of such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 120

incremental constructions and gives a general way to “divide and conquer” geometric

problems, which can be used in the parallel as well as in the sequential computation.

Clarkson and Shor [91] have given a general framework in which geometrical

problems are stated in terms of objects, regions, and conflicts between objects and regions.

The algorithms incrementally (i.e., in the sense that the points are introduced one at the

time) construct the set of regions defined by a current subset of the input objects which

are not in conflict with these subsets and are maintained in an additional data structure

which is called the conflict graph. Domains for such incremental geometric problems have

included:

• Convex hulls [125];

• Delaunay trees [61];

• Delaunay triangulation of a set of points in any dimension [62,63,74,167];

• Voronoi diagram in any dimension [61,62].

• Visibility graphs [168];

There are also some algorithms which do not impose the restriction that all the

points have to be known in advance and maintained in an auxiliary data structure (i.e., the

conflict graph) and thus, are more "on-line". Some of such on-line algorithms have been

for the following problems:

• Convex polygons [266,281,331];

• Convex hulls of a set of points [266,331];

• Packing and Covering geometric objects [102,192,229,236,297];

• Steiner trees [7,334,341];

• Closest-pair problem [304];

• Robot navigation [110,112,199,273].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 121

Furthermore, some generalized techniques have been developed, in order to

dynamize large classes of geometric algorithms (summarized in [266,331]).

6.2 On-line Navigation in an Unknown Environment
In this section, we study the on-line navigation problem, where an on-line

algorithm is trying to reach a specific target point in some unknown geometric

environment. The goal of an on-line algorithm is to optimize the amount of searching

(i.e., minimize its competitive ratio of the on-line strategy) before the target point is found.

This on-line problem has connections with the k-server problem, when the environment is

a layered graph [112,140,195,200,288].

6.2.1 Problem Motivation and Related Results
A natural problem in robot motion planning is the searching for a specific

recognizable object in a geometric environment with or without obstacles in it.

Particularly, this problem can be divided into two categories:

• Motion path planning through a static and known geometric environment in which the

robot has a complete information (e.g., a map) of the environment in advance

[303,305,345]; and

• Navigation in an unknown scene in which an autonomous robot has to efficiently

traverse its way through a new environment [195,199].

The design and evaluation of algorithms for such navigation is a classical and

interesting algorithmic problem of motion planning for which a few results exist

[36,109,110,112,220,222,230,251], However, this problem deserves more theoretical

research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 122

We consider the problem of a point robot (automaton) which has to travel in an

unknown simple class of polygons from any point s (starting point) to another point g

(goal). It is interesting for many real life situations to consider the second category of the

problem for finding a path dynamically (i.e., in on-line fashion) based only on the local

visual information that the mobile robot (i.e., a robot with an on-board vision system)

gathers through. During the last five years, the interest of on-line algorithms of motion

planning has grown [60,70,106,109,183,184].

Lumelsky and Stepanov [251] earlier studied a similar problem when a robot with

a tactile sensor moves in an unknown environment of non-convex obstacles and the robot

can perceive an obstacle only when it hits it. Then it searches the obstacle’s contour for a

leaving point with minimum distance to the goal and updates from there. Recently, this

algorithm has been extended for solving the three-dimensional path planning problem in

an unknown environment containing obstacles of arbitrary shape, under the assumption

that an exploration algorithm is available to the robot [250],

Blum et al. [60] have constructed a (6 k + 4)-vertex scene with only one obstacle,

for an integer k > 2 such that every deterministic on-line algorithm (even if it perceives the

currently visible part of the scene) needs more than 3 (k - 2) steps up to reaching the

target.

Papadimitriou and Yanakakis [273] were the first to consider competitive

algorithms and analysis for scenes of disjoint isothetic rectangles (i.e., unit-size squares)

with sides parallel to the axes. They were able to find an asymptotically 3/2-competitive

algorithm and prove that there was no on-line algorithm that had a bounded competitive

factor for scenes with arbitrarily thin rectangles (i.e., rectangles of unbounded aspect

ratio: the ratio of the longer side to its shortest side).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 123

La'er on, Chan and Lam [70] constructed an on-line algorithm for the robot to

determine an obstacle-free path to its goal point dynamically, that is, with no information

about the obstacles in advance. They showed that if the aspect ratios of the obstacles

were bounded by some constant aspect ratio r of every rectangular obstacle in the scene,

r
then an asymptotically (1+ —)-competitive on-line algorithm could be designed for

2

navigating in an unknown environment Recently, Mei and Igarashi [263j proposed an

3
efficient (1+ — r)-competitive strategy for robot navigation in an unknown environment

containing rectangular and rectilinear obstacles. This on-line algorithm gives a better

8 5
competitive ratio of - than the ratio — obtained by the mixed heuristic presented in [273]

for the special case of square obstacles (i.e., when r = 1).

Similar on-line problems have been studied for searching, exploring and mapping

using visual information [110,195,197,199,273]. In particular, Blum et al. [60]

formulated the room problem, in which the robot has to move from a comer to the comer

of a square room, provided that the obstacles are rectangles or convex polygons. They

presented an on-line algorithm with a tight lower bound of Cl(Jn) on the competitive ratio

of the Euclidean distance n traveled by the robot to the shortest obstacle avoiding path.

Recently, Blum [360] generalized the above result by developing an optimal deterministic

«< > /?)-competitive on the robot’s ilh trip for all i < n. Karloff et al. [206] proposed a

randomized 0 (l)-competitive algorithm for the room problem.

Klein [220] studied another navigation problem in a simple polygon so-called a

street. A simple planar polygon (P, s, g) with two distinguished vertices, s and g, is a

street if and only if the two boundary oriented chains L {left) and R (right) from s to g are

mutually weakly visible (i.e., each point of L can be seen from at least one point of R and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 124

vice versa). He described an on-line strategy for finding a short path from s to g in a
3

street, which achieved a competitive factor of (1 + —•«){ < 5.72) in the Euclidean

metric Li. Moreover, this strategy has a lower bound of J i (> 1.41) on the competitive

factor for searching in a street.

Recently, Kleinberg [222] has considered a simple on-line algorithm for this

problem improving the competitive ratio to 2 ^ 2 (< 2.83). He also proved that his

strategy has an optimal V2-competitiveness for searching in rectilinear streets.

Additionally, Dalta and Icking [106] defined a new, strictly larger class of simple

polygons, called Generalized streets (G-streets, for short) and presented an on-line

strategy which achieves an optimal 9-competitive ratio (resp.,V82-competitive) in Lt

(resp., Li) metric for searching in an unknown rectilinear G-street. We can easily extend

the results and develop an on-line strategy which achieves a competitive ratio of 18 in Lt

metric for searching in unknown rectilinear twice-G-streets (2-G-streets): that is, a

rectilinear simple planar polygon, every boundary point of which is mutually weakly

visible from a point on a horizontal or vertical line segment connecting the two boundary

oriented chains L and R from the points s and g. The interesting open question remains if

there exists a more general natural class of simple polygons that can be searched

competitively.

In the next section, we present a greedy on-line algorithm which achieves a

competitive ratio of V3 (< 1.733), improving the best upper bound known is the

literature for the visual searching in a street. Moreover, we show that ln5 » 1.6094 in the

best randomized competitive upper bound for any on-line algorithm for visual searching a

street. The last result shows that randomization is strictly more powerful for this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 125

6.2.2 On-line Visual Searching in Unknown Streets
Let P be a street with a starring point s, and a goal point g on the boundary

Bd(P). For simplicity, we assume that no three vertices of P are collinear and the

polygonal chains L and R are ordered in direction from 5 to g. We state some definitions

and visibility properties o f streets, before we describe the on-line strategy itself.

The visibility polygon Vis rip) of the polygon P from pe/* is the set {ye/*; y is

visible from p }. The extended visibility polygon EVtfp) of P at a point pe P consists of all

the boundary points of P that have seen so far.

We define a bay (or cave [222])' B to be a connected chain of Bd(P) such that the

robot has seen the endpoints of the chain but no other points of it. A pharos (sightpoint

or cavemouth) of a bay B is the closest reflex vertex of the Bl(P) that robot sees from

some point of its path. Clearly, we have the left pharos u / (or right pharos x>T) of the left

bay Bl (resp., right bay B r) of the street P. Let d (.,.) denote the L: length of the shortest

path between two points in P. The shortest (s, gj-path r from s to g is a chain of the

segments joined at reflex vertices of P.

We have the following easy facts:

Lemma 6.1. [222]

(i) I f g is contained in a bay B (left bay BL or right bay B r) and x < * T. then the (x,g)-

path o f T touches either pharos (resp., left \>tor right \>r) o f B.

(ii) Let p € Bd(L) (or t,tf tk) ' and let 4*6 L (resp. 'Fe R) be the (s, pj-boundary chain o f

P. I f the robot moves from s top in P, it will have seen every point on 'P.

(iii) All left (right) pharos o f P lie to the left (right) o f all right (left) pharos o f P.

1 Here we would like to mention that we adopt Kleinberg’s terminology [2 2 2], although different
notations were used when our on-line strategy has been first developed indepentenily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 126

We remind that a monotone path from a point pi to another point pi of the shortest

(s, gj-path T is one where the x- and y-coordinates of the points on the path never

decrease along the direction of the straight-line path. Next, our on-line strategy is stated

iteratively.

Procedure Street-SPS; {* Shortest Path Strategy *}

{* This strategy finds a short path from s to g in a street not known in advance. *}

const s: Point-of-P; { * the starting point * }

g: Point-of-P; { * the goal (target) point * }

var p : Point-in-P; { * current position * }

q : Point-in-P; { * here an event occurs; q is called an event point * }

v t , v r : Point-of-P; {* the most advanced points on L and R, respectively, that the

robot has so far identified * }

begin { * Street-PSP *}

p := s;

Determine EV? (p) and ur ; {* if both of Vi and u r exist *}

while (g is not visible from p) do

If the reflex vertex \)i (or of) is not defined,

then {* Case 2: there are no right (resp., left) pharos *}

p := \)r ; (resp., p := o ; ;)

else if p, x>i, ur are collinear,

then { * Case 3 *}

p := the closer of (x>i, Dr);

else (* Case 4: Both of x>t and \)r are visible in £V/<p) *)

Choose a direction of motion such that x>t lies to its left and ”or

lies to its right. Walk straight to this direction until at some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 127

point q of robot’s path we have that or v q (or v q) is parallel to

the .r-axis.

Move on the direction y = - x (resp., v = x)\ it depends if i)/

(resp.. \)r) has been seen first. The robot continues to move on

the diagonal direction monotonically, updating the extented

visibility and the points v t, \)r, until it hits the boundary of P or

arrives at some diagonal point p in which one of the following

events happens:

(El). The robot has the same u = max(xu yr) x- or y-coordinate

with Vi or u„ respectively:

(E2). One of the chains Lx or Rx becomes completely visible,

where Lx (resp., Rx) is the portion of boundary chain between

Vi (resp., ur) and the endpoint of X lying on the negative x-

(resp., y-) axis.

Set p : = p ' ;

end; {*if*}

Determine new £V7<p), Vi and/or v t in EVdp)\

Update EVMp), Vi and/or v , ;

end; {* while *}

Walk straight towards {* Case I *}

end. {* Street-SPS *}

Figure 6.1: A V3 -competitive On-line Strategy for a S treet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 128

case 2 case 3

Ur = (Xr , y r)

= - X

(X / ,

case 4

Figure 6.2: Robot Movement Cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 129

The following theorem provides the main inductive result.

Theorem 6.1. For any street P. the on-line algorithm Street-SPS creates a (s.g)-path

that does not exceed V3 times the length d(s, g) o f the shortest (s, g)-parh in P (i.e., this

deterministic strategy achieves a competitive ratio o f V3).

Proof: If only one of the cases 1-3 applies (see figure 6.2), we easily get that the robot

follows the path from p to p' that is monotone with respect to the chosen coordinate

system. That is, the robot has traveled no more than y[l d(p, p') in L2 metric.

Now, suppose that Case 4 holds. Let I denote the distance traveled by the robot

(see Figure 6.2) before v q or v q to be parallel to the x-axis and let consider the case in

which event (El) occurs iirst. Assume that the right pharos u r = (xr, yr) has the same v-

coordinate as the robot. Also, let be v t = (X / , y() and x, < yr. Then the robot travels / +

>/2 yr, while we have d(p, p') > J(/ + xr)2 + .v” . Thus, the worst-case competitive ratio

of our strategy has to be bounded oy

sup (I + J z -X ') < VT (6.1.1),
l , X r , X r e 9i + J (l + Xr)2 + X *

where 91+ denotes the set of non-negative real numbers.

Next, suppose that the event (El) occurs, and v t = (-x/, -yt) has the same x-

coordinate as the robot. If we have x/> yr, then the robot travels / +V2-x(and we get

that d(p, p') > + x j . Therefore, the worst-case competitive factor of our strategy

has to be bounded above by

/ + V2 x JT.U.- + 1
max (, ') - max (- . ■ —) (6.1.2),

9l+ V/2 + Jt,2 w e 9 l + Vw’2 + 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 130

where w = and / * 0. A simple analysis shows that the maximum is reached at w =

V2 at which the maximum value is 2)2 + l = V3.

Corollary 6.1. I f the street P is rectilinear, the on-line strategy Street-SPS has an

optimal competitive ratio o f .

Proof: Since Case 4 cannot occur when we apply the greedy algorithm Street-SPS in a

rectilinear street.

Corollary 6.2. The space complexity' o f the on-line algorithm Street-SPS (i.e., the

me/rwry size needed by the robot) does not depend on the street but only on the maximum

complexity o f the visibility polygons encountered.

Kleinberg [222] mentioned (without proof!) that his simple on-line strategy is

1 + V5()-competitive. This argument is not true. Even our strategy cannot achieve the
2

above competitive ratio, because V2 is the minimum value that maximizes both formulas

(6.1.1) and (6./.2).

Theorem 6.2. There is no better randomized ln5-competitive strategy (ln5 < 1.6095)

against oblivious adversaries for visual searching an m^nown street.

Proof: The result follows from a randomized technique similar to those in [110] for on

line motion planning.

If a street has four vertices (see Figure 6.3 (a)), there is a strategy with

competitive ratio of V2 in metric Li-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 131

g

(a) <b)

Figure 6.3: Visual Search in Streets with four and five Vertices.

If the street has five vertices (see Figure 6.3 (b)), there exists a randomized H r

competitive algorithm (i.e., the harmonic number Hs - ln5 < 1.6095) against an oblivious

adversary. Therefore, there is no randomized strategy which achieves a better

competitiveness than Hs against an oblivious adversary for any street with more than five

vertices.

6 3 On-line Geometric Routing for Planar Graphs
We consider the on-line (geometric or visual) routing problems on an initially

unknown weighted plana, graph under the fixed graph scenario [195] and present

deterministic competitive algorithms obtain the route. This problem is mostly an on-line

graph problem, than one that has been done within a framework of computational

geometry.

6.3.1 On-line Traveling Salesperson Problem
Routing problems [46,126,272] involve the periodic collection and delivery of

goods and services which are of great practical importance. The practical goal of finding a

route of such problems is the cost minimization and service improvement Abstractions of

these problems can be modeled easily and naturally with graphs. Unfortunately, many of

these interesting standard (off-line) routing problems, including for instance the well

known k- traveling salesperson problem [237,238,272] (i.e., k-TSP, for short, where k £

1) are NP-complete in the sense of Cook [97] and Karp [209].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 132

Pruhs et al. [195] considered the on-line I-TSP (also called Visual J-TSP) for a

planar weighted graph G = (V, E) under the fixed graph scenario (FGS, for short; where

the on-line algorithm is aware of every edge incident to a visited vertex, but IVI = n is not

known in advance). This on-line FGS is variant to that so-called point-by-point scenario

[112,273], where the points are revealed one at a time. The goal of the searcher’s robot is

to visit each vertex of G incurring as little cost as possible.

Pruhs et al. [195] presented the following modified on-line algorithm for the visual

l-TSP under the FGS. We note that the distances of the vertices require only to be non

negative w.l.o.g. and need not satisfy the triangle inequality in the planar embedding.

Algorithm Visual-l-TSP (x, y: Vertices; G : Graph);

\
{* Note that x is the starting vertex of G * }

1. Compute ONG (G);

{* ONG(G) is a planar graph that contains the MST of Visibility graph of G; this

step takes 0 (n 2 /ogn) tim complexity *).

2. Vy e ONG(G). apply Modified-Shortcut (x, y: Vertices; ONG(G): Graph); {* in
i '

0 (n 2 /t»gn) time *}.

Procedure Modified-Shortcut (x, y; Vertices; G: Graph);

{* Traveling from x, the searcher visits y for the first time *}

begin

for each boundary edge \)w

if the visited for first lime vertex y belongs to an object (obstacle), then

the searcher (robot) circumnavigates the perimeter of the object,

end; {* if *}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 133

if Block Cow) = 0 , then

add a jump edge y w at the end of Incident (y) and Incident (w)',.

endfor;

for each edge yz e Incident (y) do

if z is a boundary vertex and yz is a shortcut, then traverse the edge yz;.

Shortcut (y. G);

elseif z is a boundary vertex and yz is a jump edge, then

traverse the shortest known path from y to z;

Shortcut (y, z. G)\

endif

endfor

return to x along the shortest known path;

end. {* of procedure* }

Figure 6.4: A Modified On-line Algorithm for the Visual l-TSP.

Theorem 6.3. The on-line algorithm1 Visual l-TSP is 17-competitive.

Proof: Theorem 4.7 [195].

The total complexity time of of the above on-line heuristic is Q{n2 logn): that is,

the same time required by the standard (off-line) all-pair shortest path algorithms for

sparse graphs (272]. This result shows that the ability of an adversary to map from a

distance is the reason that competitive algorithms cannot be obtained for mapping

problems [110,199] under a point-by-point scenario (PBPS).

Furthermore, this heuristic easily solves an interesting open question (see [109],

Conjecture I) that there exists a constant competitive algorithm for exploring rectilinear

1 Note that this on-line strategy uses terminology from [195], which is not repeated here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 134

polygons with any number of rectilinear obstacles in it. Clearly, this problem is solvable

under FGS even for general simple polygons and obstacles, but it remains open under the

PBPS for rectilinear polygons and obstacles.

The computation of a tour in on-line setting under the FGS has some relations to

broadcasting in a network with unknown topology. It would be challenging and interesting

to generalize the result for on-line TSP on a general weighted graph under FGS.

6.3.2 On-line Geometric k-CPP for Planar Graphs

We extend the visual l-TSP to k-CCP (i.e., k-Chinese Postman Problem, k>l) and

other on-line routing problems in plane.

Definition 6.1. Let G = (V, E) be an undirected multigraph with a positive cost function

defined on E c V x V, A i-route (or ^-circuit) is a set of /e-cycles that start from a fixed

vertex \js (post office) and collectively cover every edge in the planar graph. When k = 1,

k-CPP is degenerated as 1-CPP.

Lemma 6.2. There is an O(n*logn) approximation algorithm for the visual 1-CPP

which achieves a competitive ratio o f 17.

Proof: By Theorem 6.3.

Lemma 6.3. Assume that the degree o f a fixed node \), in a planar graph G is 2k-1 (or

2k; k -1 ,2,3,...). Then the optimal tour o f the visual k-CPP can be immediately formed

from that o f visual I-CPP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 135

Proof: The odd node (the case of an even node is similar) \)4 must be matched for visual

1-CPP. After forming the optimal tour for visual 1-CPP, u, becomes an even node the

degree of which is at least 2k. Starting from o, a postman has to go through it at least 2k

times in order to traverse each edge at least once in G. The 2k times correspond to k-

cycle tours for which at least one edge differs from others. Considering addiig no new

edge to G when the tour of visual 1-CPP is decomposed into that of k-CPP, which is

optimal.

The on-line k-CPP cannot be obtained by Lemma 6.3 when the degree of fixed

node is 2 n less than 2 k after applying a non-negative weighted on-line matching

algorithm. In other words, assuming that n postmen in tours can be formed at o, using

matching algorithm, there are k-n postmen to be arranged. We want to construct k-n non

decreasing tours pi (where i = n+1 k) through node us subject to the on-line version of

definition 6.1. These tours obtained in such way are called artificial tours.

Definition 6.2. A spanning tree (ST) with root node is defined as an arborecent

spanning tree (AST) T if the distance is the shortest one between os and each node

belonging to T.

Lemma 6.4. Each artificial tour contains at most one edge which does not belong to a

arborecent spanning tree T.

Proof: Assume that an artificial tour p contains two edges et, e2 <E T. We consider the ei

directly (or indirectly) connected with ei, we easily reach a contradiction.

The above Lemma 6.4 gives the construction of those k-n artificial tours, denoted

by P(E), based on AST T using the following procedure:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 136

Algorithm A ^ n *

1. Select ea h e e E.

2. Compute each smallest Euler tour p(e) containing e from vertex \)j.

Figure 6.5: An Algorithm to find the Artificial Tours of a Planar Graph.

Clearly, |£ | -artificial tours can be found in OflVI2) time using Lemma 6.4. We can

also order these tours P(E) in 0(IVI2-/«glVI2) time. Therefore, the tours P(E) can be found

in at most 0(IVI3) time, since the arborecent spanning tree T can be computed in 0(IVt3)

time.

Next, we assume that the optimum solution for visual 1-CPP in a planar G is

obtained from node \), the degree of which is changed into 2 n after matching. Thereore,

there are (k-n) artificial tours obtained from P(E), denoted by p j ^ - n) Now, we have the

following (semi) on-line algorithm for the geometric k-CPP\

Algorithm v j* _#f)

1. Compute visual 1-CPP, denoted by v j ; {* This step takes 0(IVI2 /oglVI) time

complexity *}.

2. Find ASP T with roofus; {* in 0(!VI3) time *}.

3. Find P(E), based on T; {* in 0(IVI3) time *}.

4. Design k post tours from v j and p ^ ~ n^ P(E); {* in 0(1 Vi) time *}.

Figure 6.6: An On-line Visual k-CPP Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 137

Theorem 6.4. The Algorithm fo r on-line k-CPP is an 0(IVI3) approximation

on-line algorithm which achieves a competitive ratio o f 18.

Proof: Step 1 designs n postmen’s tours, denoted by OPT/(I), where I is an instance for

the visual k-CPP. Step 2 constructs (k-n) 1-post tours denoted by p ^ ~ n ̂€ P(E). We

have that the optimum solution OPTrfl) of k-CPP obtained by the above algorithm

y (k - n) satjsfjes following formulas:
n *

! OPTk(I) | > | />(* " n) (I)| and 17- |oPTk(I)| > I OPT,(I) I. n

Therefore, | V(* ~ n)(I)| = I OPT,(I) + P (* “ n)(I)| < 18-1 OPTk(I) I. n n

Similarly, it is easy to obtain greedy competitive algorithms which yield

approximate solutions for other routing problems, for example k-DCPP (directed k-CPP),

k-TSP, k-SCP (k-stacker-cranes problem) which are all NP-complete for k > 1, since they

contain the Hamiltonian Path Problem as a particular case [209].

Recently, Ausiello et al. [16] have considered a variant on-line version of the

routing problem for planar graphs in which each request can be served only after a certain

release time. This on-line scheduling problem has many applications from robotics to

several transportation problems. They have proposed a 5/2-competitive exponential

routing algorithm and a 3-competitive (resp., 7/3-competitive) strategy for an Euclidean

space (resp., line). They also proved that no on-line routing algorithm (either deterministic

or randomized) could achieve a competitive factor lower than 2 in Euclidean plane. This

lower bound is not necessarily valid for every metric space.

The main open question is to bridge the gap between lower and upper bounds for

al these problems mentioned in this section. Moreover, anothe’ challenging open research

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 On-line Algorithms in Computational Geometry 138

problem is to extend these results for general graphs or different metric spaces and

network topologies using more than one server (robot) as well..

The real danger is not that robots will begin to think

like hitmans, but that humans will begin to think like robots.

S. J. Harris

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7

Conclusions and Future Directions
There is nothing new except what has been forgotten.

Marie Antoinette

How extremely stupid not to have thought o f that!

T. H. Hux’ y

There remain many on-line applications which have not yet been explored. Our

research by no means covers all the areas where the theory of on-line algorithms applies.

Aside from designing algorithms in many ireas where on-line problems arise, more general

issues in this field are not searched. Moreover, the field of incremental algorithms has

many open problems of both theoretical and practical interest.

We conclude with some remarks and suggestions for new directions in the study of

on-line algorithms. Finally, we summarize our results and identify some important new

areas worth considering for future research.

7.1 A Critique of Competitive Analysis

Competitive analysis of on-line algorithms is defined as the worst-case ratio

between its cost and that of a hypothetical optimal off-line algorithm. In other words, it is

a theoretical framework used to determine the disadvantage of an on-line algorithm, which

has incomplete information about the future (e.g., think of stock market investment).

Thus, on-line algorithms often perform much worse than the off-line strategies in many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 Conclusions and Future Directions 140

situations inherently on-line in nature. On the other hand, it may seem unfair to allow the

off-line algorithm to select (without cost) the best initial configuration, whereas the on-line

algorithm is assumed to start with the worst one.

Since competitiveness is a worst-case analysis, it may fail to reflect the “typical”

behavior of any algorithm. For example, NP-compIeteness is an analogous situation

where a problem is hard in the worst case, but not necessarily in the typical case. A variant

approach is to combine the competitive and average-case analyses by looking at on-line

algorithms, which achieve small competitiveness and also perform efficiently against

typical request sequences.

A criticism that competitive analysis measures how well an algorithm performs in

the case of an adversarial future has the following two implications:

• !t results in large theoretical lower bounds which are not practical, and

• If an algorithm has an optimal competitive ratio, this does not give any information

about the running time of the algorithm when the future is pathological.

There may be alternative measures to competitive analysis that are relevant to the

usefulness of an algorithm, although the measure used to evaluate algorithms influences

the kind of the developed algorithms, paradoxically. Perhaps on-line problems are a means

of exploring this issue.

7.1.2 New On-line Models
Ben-David and Borodin [350] have suggested a new measure of an on-line

algorithm. They presented the following example to describe a shortcoming of

competitive analysis. Let us consider the problem o f buying an insurance policy: paying

an annual premium of p to insure a car against theft is a non-competitive strategy'. Let the

cost of repairing or replacing a car be c. An algorithm has to decide every year whether to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 Conclusions and Future Directions 141

buy auto insurance or not. The (^/^-competitive algorithm that never buys insurance is

optimal. This is a contradiction to our intuition that insurance is not good if a claim is

never presented to the insurance company.

This problem which is difficult to be solved by the traditional competitive analysis

has an optimal solution using the Max / Max measure [350], which compares the worst

case amortized behavior of an algorithm with that of the off-line one. On the other hand,

minimizing Max / Max ration forces us to buy insurance evry year as long as p < c.

Although this measure has the additional benefit that on-line algorithms can be directly

compared, there are many interesting unsolved problems.

It is unlikely to have a case where there exists an algorithm that performs better

than all the others on every input. Thus, the following interesting question remains open:

Is there a better and general way to compare on-line algorithms efficiently without

comparing each one to the optimal off-line algorithm?

7.3 Future Work

73.1 Lookahead

The weak lookahead is a theoretical on-line model against an oblivious adversary,

while strong lookahead is a practical one as well, which improves the competitive ratio of

some on-line algorithms (i.e., paging problem).

Paradoxically, no {finite*) lookahead is sufficient for any improvement of

competitive performance for the decision-making tasks (e.g., k-server problem). The

objective here is to provide a more realistic and reasonably general on-line framework that

can suggest how to design efficient algorithms which are competitively better.

1 The potential benefit of the finite lookahead with respect to the new Max/Max ratio becomes an
important issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 Conclusions and Future Directions 142

Generally, there may exist a “principle of optimality" for a whole class of on-line

problems so that it can competitively determine the current state of the optimal off-line

problem when provided with the k-subsequent future requests. It is also plausible that

every on-line problem with lookahead (or even finite lookahead) may efficiently identify

the optimal on-line strategy (in the form of a dynamic program) using some approach.

73.2 On-line Learning Versus Off-line Learning

An interesting application of on-line theory of algorithms should be on learning

theory in the field of Artificial Intelligence (Al). Here, just as in the well studied on-line

model, only the set of possible queries is known, wbile in the off-line model the sequence

of queries is known to the learner in advance. We would like a student in on-line model

to learn an unknown concept from a sequence of “guess and test ” trials and to make as

few mistakes as possible.

It would be interesting to give a combinatorial characterization of the number of

instances in the off-line model and design a competitive (maybe a permutation) algorithm

which bounds the number of mistakes of on-line learning versus off-line learning.

7.3.3 Central Open Problems

There are several fundamental topics in the theory of on-line algorithms and many

challenging problems, that remain unsolved. The following general considerations are of

the most interest to theoretical computer science, while some specific open questions have

already been discussed in each chapter:

• Find new complexity models for on-line and incremental computation. Specifically, we

are interested in practical on-line models to analyze typical request sequences even

better. We also ask whether there exists a better performance measure than the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 Conclusions and Future Directions 143

competitive analytic approach without risk or uncertainty' for the decision making on

line problems.

• Improve the lower or upper bounds on competitiveness of on-line algorithms and

bridge all the (large) gaps left between the already proven ones. For example, find

lower bounds on loose competitiveness [347] for LRU, FIFO and MARK on-line

strategies. Also, improve or optimize the competitive ratios for weighted caching, k-

server and other combinatorial on-line problems.

• Extend the theory of on-line algorithms to packing and covering geometric objects (i.e.,

on-line tiling).

• Consider new on-line algorithms and applications in parallel and distributed

environment.

• It is of great interest whether randomization can help to improve the competitive

performance of the algorithms for on-line problems, generally.

Finally, a very important direction for future research is to derive a general

complexity theory for the tradeoff between running time and competitiveness.

7.4 Thesis Summary

In this thesis we studied the design and analysis of on-line algorithms for several

combinatorial optimization problems: paging, weighted caching, the k-server problem,

graph coloring and weighted marching.

We first presented some notations and results about the on-line computation as

well as the on-line complexity bounds, including those for NP-complete problems, when

the computational resources were restricted.

We then applied the method of competitive analysis to study the list update and

paging problems considering simple related results under variant on-line models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 Conclusions and Future Directions 144

Next, we extended the theory of random walks and that of electrical networks to

the k-server and its related problems for non-resistive spaces against an adaptive

adversary.

We continued the study with the on-line coloring algorithms for particular graphs

giving a slightly tighter competitive performance ratio for the coloring d-inductive graphs

under the framework of the strong lookahead.

We examined the on-line algorithms for minimum or maximum weighted matching

as well as for the on-line assignment problet.. using the dual bounding technique to simply

reanalyze them.

Lastly, we applied the theory of on-line algorithms for specific distributed and

geometric computational problems. Particularly, we presented an on-line navigation

strategy in an unknown simple polygonal environment of streets, which achieves the best

(nearly optimal) competitive ratio known in the literature.

In closing, we would like to believe that new theory and beautiful mathematics will

grow up as the world of on-line algorithms matures. Furthermore, we hope that more

research and cross-fertilization in the areas of dynamic and on-line algorithms will bridge

the gap between practical and theoretical algorithms.

A pessimist is an optimist w ho tried to put the theory into practice.

Anonymous

This is not the end. It is not even the beginning o f the end.

But it is, perhaps, the end o f the beginning.

Winston Churchill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms
A bibliography proves the author's competence by showing

the mountain o f dross he has to win one nugget o f truth.

L. J. Peter, hierarchiologist

This bibliography is an extensive coverage of references which are reflected in the

title and have been in the literature by this time. It should be pointed out that most of these

references are covered in our research. Additional references for particular topics (e.g..

Dynamic data structures and algorithms) are known to exist and provide a wider coverage

than the list offered by this bibliography.

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive
relationships in large data and knowledge bases. In Proc. o f The ACM-S1GMOD,
1989.

[2] A. Aggarwal and A. K. Chandra. Virtual memory algorithms. Proc. 20th Annual
ACM Symp. on Theory o f Computing, pp. 173-185, 1988.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis o f Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[4] S. Albers and H. Koga. New on-line algorithms for the page replication problem.
L N. in Comp. Sc., Vol. 824. Algorithm Theory - SWAT' 94, pp. 24-36, 1994.

[5] S. Albers. The influence of lookahead in competitive paging algorithms. L N. in
Computer Science, Vol. 726. Algorithms - ESA' 93, pp. 1-12, 1993.

[6] N. Alon. Generating pseudo-random permutation and maximum flow algorithms.
Information Processing Letters, pp. 201-204, 1990.

[7J N. Alon and Y. Azar. On-line steiner trees in the Euclidean plane. In Proc. 8th
Annual ACM Symp. on Computational Geometry, pp. 337-343, 1992.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 146

[8] N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower bounds on the
competitive ratio for mobile user tracking and distributed job scheduling. In
Theoretical Computer Science 130, 175-201, 1994. Also in Proc. 33rd IEEE
FOCS, pp. 334-343, 1992.

[9] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its
application to the k-server problem. {Extended abstract). On-line Algorithms,
DIMACS Series in Discrete Math, and Theor. Comp. Sc., 1-10, 1992.

[10] N. Alon and J. H. Spencer. The Probability Method . Wiley, New York, 1991.

[11] J. Aronson, M. Dyer, A. Frieze, and S. Suen. On the greedy heuristic for
matching. In Proc. o f 5 th ACM-SIAM on Symp. on Discrete Algorithms, pp. 141-
148, 1994.

[12] S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path selection in
nonblocking network. In Proc. 22nd Annual ACM Symp. on Theory o f
Computing, pp. 149-158, 1990.

[13] B. Alpern, R. Hoover, B.K. Rosen, P.F. Sweeney, and F.K. Zadeck. Incremental
evaluation of computational circuits. In Proc. o f the 1st Annual ACM-SIAM Symp.
on Discrete Algorithms, pp. 32-42, 1990.

[14] J.A. Aslam and A. Dhagat. On-line algorithms for 2-coloring hypergraphs via chip
games. Theor. Comput. Scie. 112, pp. 355-369, 1993.

[15] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line machine
Scheduling with applications to load balancing and virtual circuits routing. In Proc.
25th ACM Symp. on Theory o f Computing, pp. 623-631, 1993.

[16] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Serving
requests with on-line routing. L. N. in Comp. Scie., Vol. 824, Algorithm Theory-
SWAT' 94, pp. 37-48, 1994.

[17] G. Ausiello and G.F. Italiano. On-line algorithms for polynomially solvable
satisfiability problems. In J. o f logic Programming 10, pp. 69-90, 1991.

[18] G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. Incremental
algorithms for minimal length paths. In Proc. o f the 1st Annual ACM-SIAM Symp.
on Discrete Algorithms, pp. 12-21, 1990.

[19] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 147

[20] D. Avis. A survey of heuristics for the weighted matching problem. In Networks
13, pp. 475-493, 1983.

[21] F. Aurenhammer. Voronoi Diagrams: a survey of a fundamental geometric
structure. ACM Comp. Surveys 23, pp. 345-405, 1991.

[22] B. Awerbuch. Complexity of network synchronization. In J. ACM. pp. 804-823,
1985.

[23] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual
circuits with unknown duration. In Proc. 25th Annual ACM Symp. on Theory o f
Computing, pp. 321-327, 1993.

[24] B. Awerbuch, Y. Azar, and S. Plotkin. Throughout competitive on-line routing. In
Proc. 34th IEEE Annual Sxmp. on Foundation o f Computer Science, pp. 32-40,
1993.

[25] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In
Proc. 25th ACM Symp. on Theory o f Computing, pp. 164-173, 1993.

[26] B. Awerbuch and D. Peleg. Concurrent on-line tracking of mobile users. In Proc.
SIGCOMM. Zurich, Sept. 1991.

[27] B. Awerbuch and M. Sacks. A dining philosophers algorithm with polynomial
response time. In Proc. o f 30th ACM Sxmp. on Foundations o f Computer Science,
pp. 65-74, 1992.

[28] B. Awerbuch, Y. Bartal, and A. Fiat. Heat and Dump: Competitive distributed
paging. In Proc. 34th Symp. on the Foundation o f Computing Science, pp. 22-31,
1993.

[29] B. Awerbuch and D. Peleg. Concurrent on-line tracking of mobile users. In Proc.
SIGCOMM. Zurich, Sept. 1991.

[30] Y. Azar, A. Broder, and A.R. Karlin. On-line load balancing. In Proc. 33rd Symp.
o f Foundations o f Computer Srience, pp. 218-225, 1992. Also in Theoretical
Computer Science 130, pp. 73-84, 1994.

[31] Y. Azar, B. Kaiyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. On-line load
balancing of temporary tasks. In Proc. Workshop on Algorithms and Data
Structures, pp. 119-130, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 148

[32] Y. Azar, A.Z. Broder, and M.S. Manasse. On Choice of On-line Algorithms. In
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 432-440, 1992.

[33] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. In
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 203-210, 1992.

[34] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in a plane.
Information and Computation, Vol. 106, pp. 234-252, 1993.

[35] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching with
uncertainty. Technical Report. University o f Waterloo, October 1987.

[36] E. Bar-Eli, P. Berman, A. Fiat, and Peiyuan Yau . On-line navigation in a room. In
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 237-249, 1992. Also in
J. o f Algorithms 17, pp. 319-341, 1994.

[37] A. Bar-Noy, F.K. Hwang, I. Kessler, and S. Kutten. A new competitive algorithms
for group testing. Discrete Applied Mathematics, Vol. 52, pp. 29-38, 1994.

[38] A. Bar-Noy and B. Schieber. The Canadian travelers problem. In Proc. 2nd ACM-
SIAM Symp. on Discrete Algorithms, pp. 261-270, 1991.

[39] Y. Banal, H. Karloff, and Y. Rabani. A Better lower bound for on-line scheduling.
In Information Processing Letters 50, pp. 113-116, 1994.

[40] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data
management. In Proc. 24th ACM Symp. on Theory o f Computing, pp. 39-50,
1992.

[41] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient
scheduling problem. In Proc. 24th ACM Sxmp. on Theory o f Computing, pp. 51-
58, 1992.

[42] Y. Bartal and A. Rosen. The distributed k-server problem: a competitive
distributed translator for k-server algorithms. In Proc. 33rd Annual Symp. on
Foundation o f Computer Science, pp. 344-353, 1992.

[43] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang. On the competitive of on-line task real-time task scheduling. In J.
Real-Time Systems 4, pp. 124-144, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 149

[44] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha.
On-line scheduling in the presence of overload. In Proc. IEEE Foundations o f
Computer Science Conf, pp. 101-110, 1991.

[45] L.A. Belady. A Study of replacement for virtual storage computers. IBM
Systems Journal 5, pp. 78-101, 1966.

[46] M. Bellmore and S. Hong. Transformation of the multisalesmen problem to the
standard traveling salesmen problem. In J. Assoc. Comput. Mach. 21, pp. 500-504,
1974.

[47] S. Ben-David, A. Borodin, R. M. Karp, G. Tdrdos, and A. Wigderson. On the
power of randomization in on-line algorithms. In Proc. ACM Symp. on Theory o f
Computing, pp. 379-388, 1990. Also in Algorithmica 11, pp. 2-14, 1994.

[48] J.L. Bentley, K.L. Clarkson, and D.B. Levine. Fast Linear expected-time
algorithms for computing maxima and convex hulls. In Proc. 1st ACM-SIAM
Symp. on Discrete Algorithms, pp. 179-187,1990.

[49] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V. Wei. A Locally adaptive data
compression scheme. Comm. ACM 29, pp. 320-330, 1986.

[50] J.L. Bentley and C. McGeogh. Worst-case of self-organizing sequential search
heuristics. In Proc. 20th Allerton Conference on Communication, Control, and
Computing, pp. 452-461, 1983.

[51] J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential
search heuristics. In Communications o f the ACM, Vol. 28, pp. 404-411, 1985.

[52] A.M. Berman, M.C. Pauli, and B.G. Ryder. Proving relative lower bounds for
incremental algorithms. In Acta Informatica 27, pp. 665-683, 1990.

[53] M. Burke and B.G. Ryder. A critical analysis of incremental iterative data flow
analysis algorithms. In IEEE Trans, on Software Engineering 16, 1990.

[54] M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. On-line algorithms for
locating checkpoints. Algorithmica 11, pp. 33-52, 1994.

[55] E. Bernstein and S. Rajagapalan. The roommate problem: On-line matching and
graphs. UCB / / CSD-93-757, Comput. Sc. Division, University California,
Berkeley, CA, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 150

[561 P. Berman, H. Karloff, and G. Tdrdos. A competitive 3-server algorithm. In Proc.
1st Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 280-290, 1990.

[57] J. R. Bitner. Heuristics that dynamically organize data-structures for representing
sorted lists. SIAM Journal on Computing 8 , pp. 82-110, 1979.

[58] D.L. Black and D.D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201. Carnegie Mellon University, 1988.

[59] M. Blum and D. Kozin. On the power of the Compass. In Proc. 19th IEEE Symp.
on Foundations o f Computer Science, pp. 132-142, 1978.

[60] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric
terrain. In Proc. 23rd ACM Symp. Theory o f Computing, pp. 494-504, 1991.

[61] J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications
of random sampling on on-line algorithms in computational geometry. Discrete
Comput. Geom. 8, pp. 51-71, 1992.

[62] J.D. Boissonnat, O. Devillers, and M. Teillaud. A semi-dynamic construction of
higher order Voronoi diagrams and its randomized analysis. In 2nd Canadian
Confer, on Computational Geometry, pp. 278-281. Ottawa, 1990.

[63] J.D. Boissonnat and M. Teillaud. A hierarchical representation of objects: the
Delaunay tree. !n 2nd ACM Sxmp. on Computational Geometry, pp. 260-268,
1986.

[64] B. Bollobds. Extremal Graph Theory. Academic Press, New York, 1978.

[65] A. Borodin, S. Irani, P. Raghavan, and B. Scieber, Competitive paging with
locality of reference. In Proc. 23rd ACM Symp. on Theory o f Computing, pp. 249-
259, 1991.

[66] A. Borodin, N. Linial, and M. Saks. An optimal on-line algorithm for metrical task
systems. In Proc. 19th ACM Sxmp. on Theory o f Computing, pp. 373-382, 1987.
Also in J. o f ACM 39, pp. 745-763, 1992.

[67] D. Breslauer. An on-line string superprimitive test. Technical Report CUCS-022-
92, Columbia University, 1992.

[68] A. Calderbank, E. Coffman, and L. Flatto. Sequencing problems in two-server
systems. In Math. Operations Research 10, pp. 585-598, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 151

[69] C.G. Chaitin. Register allocation and spilling via graph coloring. In Proc. o f
Sigplan Symp. on Computer Construction. Sigplan, Note 17, pp. 98-105, June
1982.

[70] K. -F Chan and T.W. Lam. An on-line algorithm for navigating in an unknown
environment In Inter. J. o f Computational Geometry and Algorithms, Vol. 3. No.
3, pp. 227-244, 1993.

[71] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari. The
electrical resistance of a gap captures its commute and cover times. In Proc. o f
Computing, pp. 574-586, 1989.

[72] K. Chandy and J. Misra. The drinking philosophers problem. ACM TOPLAS 6,
pp. 632-646, 1984.

[73] E.-C. Chang, W. Wang, and M.S. Kankanhalli. Multidimensional on-line bin-
packing : An algorithm ana its average-case analyst In Inform. Processing Letters
48, pp. 121-125, 1993.

[74] B. Chazelle. Efficient polygon triangulation. In Proc. IEEE Symp. on Foundations
o f Computer Science, pp. 220-230, 1990.

[75] D.Z. Chen. On the all pairs Euclidean short path problem. Department of
Computer Science and Engineering, University of Notre Dame, Notre Dame, IN
46556, U.S.A.. Manuscript, 1994.

[76] J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. In Proc.
IEEE Symp. on Foundation o f Computer Science, pp. 118-123, 1989.

[77] J. Cheriyan T. Hagerup, and K. Mehlhom. Can a maximum flow be computed in
o(mn) time? In Int. Colloq. on Automata, Languages, and Programming
(ICALP), pp. 235-248, 1990.

[78] M. Chemoff. A measure of asymptotic efficiency for tests based on the sum of
observations. Annual o f Mathematical Statistics 23, pp. 493-509, 1952.

[79] G. A. Cheston. On-line connectivity algorithms. Networks 14, pp. 83-94, 1984.

[80] G.A. Cheston and D.G. Corneil. Graph property update algorithms and their
application to distance matrices. Inform. 20, pp. 178-201, 1982.

[81] W. Chin an S. Ntafos. Shortest watchman routes in simple polygons. Discrete and
Computational Geometry 6, pp. 9-31, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

* Bibliography of On-line Algorithms 152

[82] M. Chrobak and L.L. Larmore. HARMONIC is 3-competitive for 2-servers.
Theoret. Comput. Sci. 98, pp. 339-346, 1994.

[83] M. Chrobak and L.L. Larmore. Generosity helps on an II-competitive algorithm
for tree server. J. o f Algorithms 16, pp. 234-263, 1994.

[84] M . Chrobak and L.L. Larmore. On fast algorithms for two servers. In J. o f
Algorithms 12, pp. 607 614, 1991.

[85] IA. Chrobak, L. Larmore, N. Reingold, and J. Westbrook. Page migration
algorithms using work functions. In L. N. in Comp. Scie., Vol. 650. Algorithms
and Computation. ISAAC' 92, pp. 406-416. 1992.

[86] M. Chrobak and L.L Larmore. An optimal on-line algorithm for the k-servers on
trees. In SIAM J. on Computing 20, pp. 144-148, 1991.

[87] M Chrobak. H.J. Karloff, and T. Payane. New results on server problems. In Proc.
1st ACM-SIAM Symp. on Discrete Algorithms, pp. 291-300, 1990.

[88] M. Chrobak, H. Kar’off, T. Payne, and S. Vishwanathan. New results on server
problems. In SIAM J. on Discrete Mathematics, Vol. 4, pp. 172-181, 1991.

?9j M. Chrobak and L.L. Larmore. The server problem and on-line games. In
DIMACS, Vol. 7, pp. 111-131. 1992.

[90] F.K. Chung, R. Graham, and M.E. Saks. A dynamic location problem for graphs.
Comhinatorica 9. pp. 11-131, 1989.

[91] K.L. Clarkson and P.W. Shor. Applications ot random sampling in computational
Geometry: II, Discrete Comput. Geometry 4, pp. 387-421, 1989.

[92] E.G. F.Jr. Coffman and P.J. Denning. Operating Sxsretns Theorx. Prentice-Hall,
Englewood Cliffs, 1973.

[93] R.F. Cohen and R. Tamassia. Combine and conquer : A General technique for
dynamic algorithms. L. N. in Comput. Scie., Vol. 726, Algorithms-ESA ’ 93, pp.
109-118, 1993.

[94] R. Cole and A. Raghunathan. On-line algorithms for finger searching. In Proc.
32nd IEEE Symp. on Foundations o f Computer Science, pp. 480-489, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 153

[95] A. Condon. Computational models of games. An ACM Distinguished
Dissertation, 1989.

[96] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory o f Scheduling. Addison-
Wesley, Reading, 1967.

[97] S.A. Cook. The complexity of theorem proving procedures. In 3rd Symp. on
Theory o f Computing 5. pp. 151-158, 1971.

[98] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on weighted
graphs, and applications to on-line algorithms. In Proc. 22nd ACM Symp. on
Theory o f Computing, pp. 369-378, 1990.

[99] D. Coppersmith, P. Doyle, P. Rghavan, and M. Snir. Random walks on weighted
graphs, and applications to on-line algorithms. In J. o f ACM, Vol. 40, pp. 431-453,
1993.

[100] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-
Hill, New York, 1990.

[101] J. Csirik and D.S. Johnson. Bounded space >n-line bin-packing: Best is better than
first. In Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 309, 1991.

[102] C. Culberson and R.A. Reckow. Covering polygons is hard. J. Algorithms 17, pp.
2-44, 1994.

[103] F. d’Amore and V. Liberatore. The list update problem and *he retrieval of sets. In
Theoretical Computer Science 130, pp. 101-123, 1994.

[104] F. d’Amore and A. Marchetti. The weighted list update problem and the lazy
adversary. Theoret. Comp. Science 108, pp. 371-384, 1993.

[105] F. d’Amore and A. Marchetti-Spaccamela, and U. Nanni. Competitive algorithms
for the weighted list update problem. In L. N. in Comput. Scie.,Vol. 519.
Algorithms and Data Structures, pp. 240-248, 1991.

[106] A. Datta and C. Icking. Competitive searching in a generalized street. 10th ACM
Computational Geometry, pp. 175-182, 1994.

[107] H.M. Deitel. An Introduction to Operating Systems. Addison-Wesley, Reading,
1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 154

[108] X. Deng and C.H. Papadimitriou. Competitive distributed decision-making
algorithms, software architecture. By J. Van Leeuwen (Ed.). Inform. Processing
92, Vol. I, pp. 350-356, 1992.

[109] X. Deng, T. Kameda, and C.M. Papadimitriou. How to learn an unknown
environment I: The rectilinear case. Technical Report CS-93-04, Department of
Computer Science, York University, 1993.

[110] X. Deng, T. Kameda, and C.M. Papadimitriou. How to learn an unknown
environment. In Proc. 32nd IEEE Symp. on Foundations o f Computer Science,
pp. 298-303, 1991.

[111] X. Deng and S. Mahajan. Infinite games, randomization, compatibility and
applications to on-line problems. In Proc. o f the 23rd Symp. on the Theory o f
Computing, pp. 289-298, 1991.

[112] X. Deng and C.H. Papadimitriou. Exploring an unknown graph. In Proc. 31st
Annual Symp. on Foundations o f Computer Science, pp. 355-361, 1990.

[113] X. Deng and E. Koutsoupias. Competitive implementation of parallel Programs. In
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pp. 455-461, 1994.

[!14] P.J. Denning. Working sets past and present. IEEE Trans, on Software
Engineering, SE-6: 64-84, 1980.

[115] C. Derman. Finite State Markov Decision Processes. Academic Press, New York,
1970.

[116] M. Dertouzos and A. Mok. Multiprocessor scheduling in a hard real-time
constraints. In Proc. 7th IEEE Conf. on Computing Systems, 1978.

[117] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in
logarithmic expected time per operation. In L. N. in Comput. Scie., Vol. 519,
WADS ' 91, 1991.

[118] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. o f the 30th
IEEE - \mp. on the Foundations o f Computer Science, pp. 436-441, 1989.

[119] G. Di Battista and R. Tamassia. On-line graph algorithms with spqr-trees. In Proc.
o f the 17th Intern. Colloquium on Automata, Languages and Programming, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 155

[120] P.F. Dietz and R. Raman. Persistence, amortization and randomization. In Proc.
2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 78*88, 1991. Also Technical
Report 353 (revised). University o f Rochester, Dept, o f Computer Science, 1991.

[121] P.G. Doyle and J.L. Snell. Random walks and electric networks. The
Mathematical Association o f America, Vol. 22, 1984.

[122] D.-Z. Du and H. Park. On competitive testing. SIAM J. Computing 23, pp. 1019-
1025, 1994.

[123] D.-Z. Du, G.-L. Xue, S.-Z. Sun and S.-W. Cheng. Modifications of competitive
group testing. SIAM J. Computing 23, pp. 82-96, 1994.

[124] J. Du, J.Y.-T. Leung, and G.H. Young. Minimizing mean flow time with release
time constraints. Technical Report, Computer Science Program, University of
Texas 4 Dallas, 1988.

[125] H. Edelsbrunner. Algorithms on Combinatorial Geometry. Springer, Berlin, 1987.

[126] J. Edmonds and E.L. Johnson. Matching, Euler tours and the Chinese postman. In
Math. Programming 5, pp. 88-124, 1973.

[127] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin. Competitive analysis of financial
games. In Proc. 33rd IEEE Svmp. on Foundations o f Computer Science, pp. 327-
333, 1992.

[128] D. Eppstein, Z. Galil, G.F. Italiano, and S. Nissenzweig. Sparsification: a
technique for speeding up dynamic graph algorithms. Proc. 33rd Ann. Symp. on
Foundations o f Computer science, pp. 60-69, 1992.

[129] D. Eppstein, Z. Galil, G.F. Italiano, and T. Spencer. Separator based sparsification
for dynamic planar graph algorithms. Proc. 25th Ann. Symp. on Theory o f
Computing, pp. 208-217, 1993.

[130] D. Eppstein, G. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, and M. Yung.
Maintenance of a minimum spanning forest in a dynamic planar graph. Proc. 1st
SODA, 1990.

[131] V. Estivil-Castro and M. Sherk. Competitiveness and response time in on-line
algorithms. In Proc. o f the Inter. Symp. on Algorithms, pp. 284-293, 1991.

[132] S. Even and Y. Shiloach. An on-line edge deletion problem. In J. o f the ACM 28,
pp. 1-4, 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 156

[1331 L\ Faigle, W. Kern, and G. Turan. On the performance of on-line algorithms for
partitioning problems. In Acta Cybernetica 9, pp. 107-119, 1989.

[134] A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines
with dependencies. In Proc. 25th Ann. ACM Symp. on Theory o f Computing, pp.
642-651, 1993.

[135] A. Feldmann, J. Sgall, and S-H. Teng. Dynamic scheduling on parallel machines. In
Proc. 32nd IEEE Symp. on Foundations o f Computer Science, pp. 111-120,
1991. Also in Theoret. Comput. Scie. 130, pp. 49-72, 1994.

[136] D. Ferrari. The improvement of program behavior. In IEEE Computer, Vol. 9, pp.
39-47, 1976.

[137] E. Feuerstein and A. Marchetti-Spaccamela. Memory paging for connectivity and
path and path problems in graphs. In L N. in Comp. Scie., Vol. 650. Algorithms
and Computation. ISAAC' 92. pp. 416-425, 1992.

[138] A. Fiat and M. Rocklin. Competitive algorithms for the weighted server problem.
In Theoret. Comput. Scie. 130, pp. 85-99, 1994.

[139] A. Fiat, Y. Rabane, and B, Schieber. A deterministic 0 (k 3 ^-competitive k-server
algorithm for the circle. In Algorithmica 11, pp. 572-578, 1994.

[140] A. Fiat, D.P. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan.
Competitive algorithms for layered graph traversal. In Proc. 32nd IEEE Symp. on
Foundations o f Computer Science, pp. 288-297, 1991.

[141] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive
paging algorithms. In J. Algorithms 12, pp. 685-699, 1991.

[142] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Proc. 31st
IEEE Symp. on Foundations o f Computer Science, pp. 454-463, 1990.

[143] M. Fiedler, C.R. Johnson, T.L. Markham, and M. Neumann. A trace inequality for
M-matrices and the symmetrizability for a real matrix by a positive diagonal
matrix. Linear Algebra and its Appl. 71. pp. 81-94, 1985.

[144] P.A. Franaszek and T.J. Wagner. Some distribution-free aspects of paging
performance. In J. o f the ACM, Vol. 21, pp. 31-39, 1974.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 157

[145] G. Frederickson and D. Guan. Preemptive ensemble motion planning on a tree. In
SIAM J. on Computing 7, pp. 1130-1152, 1992.

[146] G. Frederickson. Ambivalent data structures for dynamic 2-edge connectivity and
k smallest spanning trees. In Proc. 32nd FOCS, 1991.

[147] G. Frederickson. Data structures for on-line updating of minimum spanning trees.
SIAM J. Computing 14, pp. 781-798, 1985.

[148] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms for
some routing problems. In SIAM J. Computing Vol. 7, pp. 178-193, 1978.

[149] G.N. Frederickson and M.A. Srinivas. On-line updating for degree-constrained
minimum spanning trees. In Proc. o f the 22nd Allerton Conference on
Communication, Control, and Computing, 1984.

[150] D. Gale and F.M. Stewart. Infinite games with perfect information. In W.H. Kuhn
and A. W. Tucker, editors. Contributions to the Theory o f Games, Vol. II.
Annuals o f Mathematics Studies, Vol. 28, pp. 245-266. Princeton University Press,
1953.

[151] Z. Galil and G. Italiano. Fully dynamic algorithms for edge connectivity problems.
In Proc. 23rd STOC, 1991.

[152] Z. Galil and G.F. Italiano. A note on set union with arbitrary deunion. In Inform.
Process. letters 36, pp. 331-335, 1991.

[153] G. Gambosi, A. Postiglione, and M. Talamo. New algorithms for on-line bin-
packing. In Proc. 1st Italian conf. on Algorithms, pp. 44-59, 1990.

[154] J. Garay, I. Gopal, K. Kutten, Y. Mansour, and M. Yung. Efficient on-line call
control algorithms. In Proc. o f 2nd Annual Israel Conference on Theory o f
Computing and Systems, 1993.

[155] J. Garay and I.S. Gopal. Call preemption in communication networks. In Proc.
INFOCOM’ 92, Vol. 44, pp. 1043-1050, 1992.

[i 5] M. Garey and D. Johnson. Computers and intractability: a guide to the theory o f
NP-completeness. Freeman, San Francisco, 1979.

[157] R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal 45, pp. 1563-1581, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 158

[158] R.L. Graham. Bounds on multiprocessing anomalies. SIAM Journal o f Applied
Mathematics, Vol. 17. pp. 263-269, 1969.

[159] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Annals
o f Discrete Mathematics 5, pp. 287-326, 1979.

[160] M.X. Goemans and D.P. Williamson. A general approximation technique for
constrained forest problems. In Proc. 3rd Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 317-324, 1992.

[161] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.
Journal o f the ACM, Vol. 35. pp. 921-940, 1988.

[162] M. Goldberg and T. Spencer. Constructing a maximal independent set in parallel.
SIAM J. Comput. 2, pp. 322-328. 1989.

[163] E. Grove. The harmonic on-line k-server algorithm is competitive. In Proc. 23rd
ACM Symp. on Theory o f Computing, pp. 260-266, 1991.

[164] A. GayartV nd J. Lehel. On-line and first fit colorings of graphs. In J. o f Graph
Theory. Voi. 12, pp. 217-227. 1988.

[165] A. Gayarfas and J. Lehel. First-fit and on-line chromatic number of families of
graphs. In Ars Combinatoria 29C, pp. 168-176, 1990.

[166] A. Gayarfas and J. Lehel. Effective on-line coloring of Pj-free graphs. In
Combinatoria 11, pp. 181-184, 1991.

[167] L. J. Guidas. D.E. Knuth, and M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. ACM Trans. Graphics 4, pp. 381-413, 1992.

[168] L.J. Guidas and J. Hershberger. Optimal shortest path queries in a simple polygon.
In Proc. 3rd ACM Symp. on Computational Geometry, Waterloo, pp. 50-63,
1987.

[169] M.M. Hallddrsson and M. Szegedy. Lower bounds for on-line graph coloring. In
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 211-216, 1992. Also in
Theoret. Comput. Scie. 130, pp. 163-174, 1994.

[170] M.M. Hallddrsson. Parallel and on-line graph coloring algorithms. In 3rd Intern.
Symp., ISSAAC' 92, pp. 61 -70, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 159

[171] F. Harary. Graph Theory. Addison-Wesley, Reading. MA. 1969.

[172] D. Hayfield, J. Gerald. Program restructuring for virtual memory. In IBM J.
Systems, and Tech., Vol. 10, pp. 168-192, 1971.

[173] J.H. Hester and D.S. Hirschberg. Self-organizing linear search. In ACM Comput.
Surveys 17, pp. 295-311, 1985.

[174] K.S. Hong and J.Y.-T. Leung. On-line scheduling of real-time tasks. In IEEE
Trans. Comput. 41, pp. 1321-1331, 1992.

[175] E. Horowitz and S. Sahni. Fundamental o f Data Structures. Computer Science
Press, 1983.

[176] X.D. Hu, P.D. Chen and F.K. Hwang. A new competitive algorithm for the
counterfeit coin problem. In Inform. Processing Letters 51, pp. 213-218, 1994.

[177] S. Huddleston, K. Melhom. Robust balancing B-trees. In Proc. 5th Gl-Conference
on Theoretical Computer Science, Lecture Notes in Computer Science 104,
Springer-Verlag, New York, pp. 234-244, 1981.

[178] S. Huddleston and K. Melhom. A new data structure for representing sorted lists.
In Acta Inform. 17, pp. 157-184, 1982.

[179] L.C.K. Hui and C.U. Martel. Analyzing deletions in competitive algorithms self-
adjusting linear list algorithms. L. N. in Comp. Sc., Vol. 834. Algorithms and
Computation-ISAAC' 94, pp. 433-441,1994.

[180] L.C.K. Hui and C.U. Martel. Randomized competitive algorithms for successful
and unsuccessful search on self-adjusting lists. In L. N. in Comp. Sc., Vol. 650.
ISAAC’ 93. Algorithms and Computation, pp. 426-435, 1992.

[181] L. Hui and C. Martel. On efficient unsuccessful search. In Proc. o f the 3rd ACM-
SIAM Symp. on Discrete Algorithms, pp. 217-227,1992.

[182] T. Ibaraki and N. Kutoh. On-line computation of transitive closure of graphs. In
Information Processing Letters 16, pp. 95-97, 1983.

[183] C. Icking, R. Klein and L. Ma. The optimal way for looking around a comer. In
IEEE-IEE Vehicle Navigation and Inform. Systenis Conference, pp. 547-550,
1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 160

[184] Ch. Icking and R. Klein. The two guards problem. In Proc. 7th ACM Symp. on
Computational Geometry, North Conway, 1991. Also in Intern. J. o f
Computational Geometry and Applications 2, pp. 257-285, 1992.

[185] G.F. Italiano. Amortized effic!"ncy of a path retrieval data structure. In
Theoretical Computer Science .pp. 273-281, 1986.

[186] G.M. Italiano. Finding paths and deleting edges in directed acyclic graphs.
Information Processing 28, pp. 5-11, 1988.

[187] G.F. Italiano. Dynamic Data Structure for Graphs. Ph. D. thesis, Columbia
University, 1991. Technical Report CUCS-019-91.

[188] S. Irani. Coloring inductive graphs on-line. In Proc. 31st IEEE Symp. on
Foundations o f Computer Science, pp. 470-479, 1990. Also in Algorithmica 11,
pp. 53-72, 1994.

[189] S. Irani. Two results on the list update problem. In TR-90-037, Computer Science
Division, UCB, Berkeley, CA, 1990. Also to appear in Information Processing
Letters.

[190] S.S. Irani. A.R. Karlin, and S.J. Phillips. Strongly competitive paging with locality
of reference. In 3rd ACM-SIAM Sxmp. on Discrete Algorithms, pp. 228-236,
1992.

[191] S. Irani and R.. Rubinfeld. A competitive 2-server algorithm. In Inform.
Processing Letters 39, pp. 85-91, 1991.

[192] J. Januszewski and M. Lassak. On-line covering the unit cube by cubes. In
Discrete Comput. Geometry 12, pp. 433-438, 1994.

[193] D.S. Johnson an C.H. Papadimitriou. Computational complexity. In Traveling
Salesman Problem, edited by E.L Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
D.B. Shmoys, pp. 37-85, 1985.

[194] S. Kahan. A model for data in motion. In Proc. 23rd Annual ACM Symp. on
Theory o f Computing, pp. 267-277, 1991.

[195] B. Kalyanasundaram and K.K. Pruhs. Constructing on-line tours from local
information. In Theoret. Comput. Scie. 130, pp. 125-138, 1994.

[196] B. Kalyanasundaram and K.K. Pruhs. On-line weighted matching. In J. o f
Algorithms 14, pp. 478-488, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 161

[197] B. Kalyanasundaram and K.K. Pruhs. A competitive analysis of nearest neighbor
algorithms for searching unknown scenes. In Proc. 9th Ann. Symp. on Theoretical
Aspects o f Computer Science, pp. 147-157, 1992.

[198] B. Kalyanasundraram and K.K. Pruhs. On-line weighted matching. In Proc. 2nd
ACM-SIAM Symp. on Discrete Algorithms, pp. 234-240, 1991.

[199] B. Kalyanasundaram and K. Pruhs. Visual searching and mapping. On-line
Algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 157-162, 1992.

[200] M.-Y. Kao, J.H. Reif, and S.R. Tate. Searching in an unknown environment: an
optimal randomized algorithm for the cow-path problem. In Proc. 4th ACM-SIAM
Symp. on Discrete Algorithms, pp. 441-447, 1993.

[201] M.-Y. Kao and S.R. Tate. A on-line matching with blocked input. In Inform.
Processing Letters 38, pp. 113-116, 1991.

[202] D. Karger, S.J. Phillips, and E. Tong. A better algorithm for an ancient scheduling
problem. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pp. 132-140,
1994.

[203] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki. Competitive
randomized algorithms for nonuniform Problems. In Algorithmica 11, pp. 542-
571, 1994.

[204] A.R. Karlin, M.S. Manasse, Rudolph L.. and D.D. Sleator. Competitive snoopy
caching. In Algorithmica 3. pp. 79-119, 1988.

[205] A.R. Karlin, S.j. Phillips, and P. Raghavan. Markov paging. In Proc. 33rd IEEE
Symp. on Foundations o f Computer Science, pp. 208-217, 1992.

[206] H. Karloff, Y. Rabani, and Y. Ravid. Lower Bounds for randomized k-server and
motion planning algorithms. In Proc. 22nd Annual ACM Symp. on Theory o f
Computing, pp. 352-358, 1990. Also in SIAM J. Computing 23, pp. 293-312,
1994.

[207] R.M. Karp. On-line algorithms versus off-algorithms: How much is it worth to
know the future? In: J. Van Leeuwen, Ed., Information Processing 92. Prcoc.
IFIP 12th World Computer Congress, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 162

[208] R.M. Karp. A characterization of the minimum cycle mean in a digraph. In
Discrete Mathematics, Vol. 23, pp. 309-311, 1978.

[209] R.M. Karp. Reducibility among combinatorial problems. R.E Miller and J. W.
Thatcher (ed.), Complexity’ o f Computer Computations Plenum Press, New York,
pp. 85-103, 1972.

[210] R. Karp and V. Ramachandran. A survey of parallel algorithms for shared memory
machines. In Handbook o f Theoretical Computer Science, Vol. A. Alsevier, 1990.

[211] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proc. 22nd ACM Symp. on Theory o f Computing, pp. 352-
358, 1990.

[212] Y. Karuno, H. Nagamochi and T. Ibaraki. Vehicle scheduling on a tree with
release times and handling times. In Proc. 4th Intern. Symp. on Algorithms and
Computation ISAAC, 93, L.N.C.S., Vol. 762. pp. 486-495, 1993.

[213] S. Khuller, S. Mitchell, V. Vazirani. On-line algorithms for weighed matching and
stable marriages. Technical Report TR 90-1143, Department o f Computer
Science, Cornell University, 1990. Also In Theoretical Computer Science 127, pp.
255-267, 1994.

[214] H. A. Kierstead. The linearity if first-fit coloring of interval graphs. In SIAM J. o f
Discrete Mathematics, Vol. I, pp. 526-530, 1988.

[215] H.A. Kierstead, S.G. Penrice, and W.T. Trotter. On-line coloring and recursive
graph theory. In SIAM J. Discrete Mathematics Vol. 7. pp. 72-89, 1994.

[216] H.A. Kierstead and W.A. Trotter. Lower bounds for on-line graph coloring. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.
7, pp. 85-92, 1992.

[217] H.A. Kierstead and W.A. Trotter. An extremal problem in recursive combinatorics.
In Congressus Numerantium 33, pp. 143-153, 1981.

[218] T. Kilbum, D.B.G. Edwards, M.J. Lanigan, and F.H. Summer. One-level storage
system. IRE Trans. Elect. Computers 37, pp. 223-235,1992.

[219] V. King, S. Rao, and R.E. Tarjan. A faster deterministic maximum flow algorithm,
algorithm. In Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 157-164,
1992. Also in J. o f Algorithms 17, pp. 447-474,1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 163

[220] R. Klein. Walking an unknown street bounded detour. In Proc. 32nd Ann. on
Foundations o f Computer Science, pp. 304-313, 1991. Also in Computational
Geometry: Theory and Applications I, pp. 325-351, 1992.

[221] J.M. Kleinberg. A lower bound for two-server balancing algorithms. In Inform.
Processing Letters 52, pp. 39-43, 1994.

[222] J.M. Kleinberg. On-line search in a simple polygon. In Proc. o f the 5th ACM-SIAM
Symp. on Discrete Algorithms, pp. 8-15, 1994.

[223] L. Kleinrock. Queuing Systems, Vol. I (Theory) and Vol. II (Computer
Applications). John Wiley & Sons, New York, 1990.

[224] D.J. Kleitman and D.B. West. Spanning trees with many leaves. In SIAM J. o f
Discrete Mathematics, Vol. 4, pp. 99-106, 1991.

[225] D.E. Knulh. The Art o f Computer Programming, Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, MA, 1973.

[226] H. Koga. Randomized on-line algorithms for the page replication problem. In L N.
in Comp. Scie., Vol. 762, ISAAC’ 93. Algorithms and Computation, pp. 436-445,
1993.

[227] G. Koren and D. Shasha. MOCA: A multiprocessor on-line competitive algorithm
for real-time system scheduling. In Theorer. Comput. Scie. 128, pp. 75-97, 1994.

[228] G. Koren and D. Shasha. D-over: An optimal on-line scheduling algorithm for
over-loaded real-life systems. In Proc. IEEE Real-Time Systems Sxmp. pp. 290-
292, 1992.

[229] W. Kuperberg. On-line covering a cube by a sequence of cubes. In Discrete
Comput. Geometry 12, pp. 83-90, 1994.

[230] K.N. Kutulakos, C.R. Dyer, and V.J. Lumelsky. Vision-guided exploration: A
step toward general motion planning in three dimension. Technical Report #1111,
Dept, of Computer Science, University of Wisconsin, 1992.

[231] M.-K. Kwan (Guan). Discrete Applied Math. 9, pp. 41-46, 1984.

[232] T.W. Lai. Self-adjusting augmented search trees. In L. N. in Comp. Scie,, Vol.
650, Algorithms and Computation, pp. 88-96, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 164

[233] T.W. Lai and D. Wood. A new approach to competitive list-update algorithms.
Technical Report #341 / 1993, Dept, of Computer Science, University of Western,
Ontario.

[234] T.W. Lai and D. Wood. Adaptive heuristics for binary search trees and constant
linkage cost. In Proc. o f the 2nd Annual ACM-SIAM Symp. on discrete
Algorithms, pp. 72-77, 1991.

[235] L.L. Larmore. On-line dynamic programming with applications to the predictions
of RNA secondary structures. In Proc. 1st ACM-SIAM Symp. on Discrete
Algorithms, pp. 503-512, 1990.

[236] M. Lassak and J. Zhang. An on-line potato-sack. In Theoret. Discrete Comput.
Geometry 6, pp. 1-7,1991.

[237] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. New York,
Holt, Rinehart & Winston, 1976.

[238] E.L. Lawler, J.K. Lenstra, A .H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing
and Scheduling: Algorithms and Complexity. 1990.

[239] E.D. LazovskaJ. Zahorjan, G.C. Graham, and K.C. Sevcik. Quantitative System
Performance. Prentice-Hall, Englewood Cliffs, 1984.

[240] F.T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tlrdos and S. Tragoudas. Fast
approximation algorithms for multicommodity flow problem. In Proc. 23rd ACM
Symp. on the Theory o f Computing, pp. 101-111, 1991.

[241] F.T. Leighton. Complexity Issues in VLSI. MIT Press, Cambridge, MA, 1983.

[242] A. Lempel, S. Even and I. Cederbaum. An algorithm for planarity testing of
graphs. In Proc. Int. Symp. on Theory o f Graphs; P. Rosenstiehl Ed., pp. 215-232.
Gordon and Breach, 1967.

[243] J.K. Lenstra, D.B. Shmoys, and E. Tiirdos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Progr. 46, pp. 259-271, 1990.

[244] H. R. Lewis and L. Denenber. Data Structures and Their Algorithms. Harper
Collins, 1991.

[245] P.A.W. Lewis and G.S. Shedler. Empirically derived models for sequences of page
exceptions. IBM Journal o f Research and Development, Vol. 17, pp. 86-100,
1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 165

[246] R.J. Lipton and A. Tomkins. On-line interval scheduling. In Proc. o f 5 th ACM-
SIAM Symp. on Discrete Algorithms, pp. 302-311, 1994.

[247] J.M. Lucas. On the competitiveness of splay trees: Relations to the union-find
problem. On-line Algorithms, DIMACS Series in Discrete Math, and Theor.
Comp. Science, pp. 95-124, 1992.

[248] L. Lovdsz, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics, Vol. 75, pp. 319-325, 1989.

[249] M.G. Luby, J. Naor, and A. Orda. Tight bounds for dynamic Storage allocation.
In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pp. 724-738, 1994.

[250] V.J. Lumelsky, S. Mukhopadhyay, and K.Sun. Dynamic path planning in sensor-
based terrain acquisition. In IEEE Trans. Robotics Automation 6, pp. 462-472,
1990.

[251] V.J. Lumelsky and A.A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. In Algorithmica
2, pp. 403-430, 1987.

[252] N. Lynch. Upper bounds for static resource allocation in a distributed system. In
Journal o f Computer and System Sciences, Vol. 23, 1981.

[253] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. On-line graph incremental
computation. In L N. Comput. Scie., Vol. 790. In Proc. o f the 19th Intern.
Workshop, WG' 93, pp. 70-80, S-V, 1993.

[254] M.S. Manasse, McGeoch L.A., and D.D. Sleator. Competitive algorithms for
server problems. In J. Algorithms 11, pp. 208-230, 1990.

[255] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for on
line problems. In Proc. 20th Annual ACM Sxmp. on Theory o f Computing, pp.
322-333, 1988.

[256] J. McCabe. On serial files with relocatable records. In Oper. Res. 12, pp. 609-618,
1965.

[257] K.M. McDonald and J.G. Peters. Smallest paths in simple rectilinear polygons. In
IEEE Trans, on CAD/ICAS, Vol. 11, po. 864-875.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 166

[258] K. Mehlhom. Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness. EATCS, Springer-Verlag, 1984.

[259] T. Matsumoto. Competitive analysis of the round robin algorithm. In L N. in
Comp. Sc., Vol. 650. ISA A C 92. Algorithms and Computation, pp. 71-77, 1992.

[260] L.A. McGeoch and D.D. Sleator. On-line algorithms. DIMACS, Vol. 7. AMS,
Providence, Rl, 1992.

[261] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging
algorithm. In Algorithmica 6, pp. 816-825, pp. 1991.

[262] R. McNaughton. Scheduling vvith deadlines and loss functions. Management
Science 6, pp. 1-12, 1959.

[263] A. Mei and Y. Igarasni. An efficient strategy for robot navigation in unknown
environment. In Inform. Processing Letters 52, pp. 51-56, 1994.

[264] P.B. Miltersen, S. Subramanian, J.S. Vitter, and R. Tamassia. Complexity models
for incremental computation. In Theoret. Comput. Scie. 130, pp. 203-236, 1994.

[265] R. Motwani, S. Phillips, and E. Tong. Non-clairvoyant scheduling. In Proc. o f 4th
ACM-SIAM Symp. on Discrete Algorithms, 1993. Also in Theoret. Comput. Scie.
130, pp. 17-47, 1994.

[266] K. Mulmuley. Computational Geometry : Introduction through Randomized
Algorithms. Prentice Hall, 1994.

[267] K. Mulmuley. On obstruction in relation to a fixed viewpoint. In Proc. IEEE
Symp. on Foundations o f Computer Science, pp. 592-597, 1989.

[268] J.Von Neumann. Zur Theorie der Gesellschaftsspiele. In Math. Ann. 100, pp. 295-
320, 1928.

[269] J. Von Neumann and O. Morgensten. Theorv o f Games and Economic Behavior.
1944.

[270] J. O ’Rourke. Art Callery Theorems and Algorithms. Oxford University Press,
Oxford, 1987.

[271] M. Overmars, M. Smid, M. de Berg and M. Van Kreveld. Maintaining range trees
in secondary memory, part I: partition problem. In Acta Informatica 27, pp. 436-
445, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of Cu-line Algorithm; io7

[272] C. Papadimitrou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, N.J., 1982.

[273] P. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Int. Colloq.
on Automata, Languages, and Programming (ICALP' 89), pp. 610-620, 1989.

[274] P. Papadimitriou. Games against nature. In Proc. o f the 24th IEEE Symp. on the
Foundations o f Computer Science, pp. 446-450, 1983.

[275] S. Pawagi and I.V. Ramakrishnan. Parallel updates of graphs properties in
logarithmic time. In Intern. Conference on Parllel Processing, pp. 186-193, 1985.

[276] A. Pedrotti. Analysis of a list-update strategy. In Inform. Letters 52, pp. 115-121,
1994.

[277] S. Plotkin, D. Shmoys, and E. Tiirdos. Fast approximation algorithms for fractional
packing and covering problems. In Proc. 23rd IEEE Annual Symp. on
Foundations o f Computer Science, pp. 495-504, 1991.

[278] D.A. Petterson. Reduced instruction set computers. Communications of the
A.C.M., Vol. 28, No.l, January, 1985.

[279] D. Peleg and E. Upfal. The token distribution problem. In SIAM J. Comput. 18,
pp. 229-243, 1989.

[280] S. Phillips and J. Westbrook. On-line load balancing and network flow. In Proc.
25th ACM Symp. on Theory o f Computing, pp. 402-411, 1993.

[281] F.P. Preperata and M.I. Sharnos. Computational Geometry: an Introduction.
Springer, Berlin, 1985.

[282] K. R. Pruhs. Average-case scalable on-line algorithms for fault replacement. In
Inform. Processing Letters 52, pp. 131-136, 1994.

[283] M. Rabin and D. Lehman. On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proc. o f 8th ACM
Symp. POPL, pp. 133-138, 1981.

[284] P. Raghavan. Statistical adversary for on-line algorithms. On-line Algorithms,
DIMACS Series in Discrete Math, and Theoret. Comput. pp. 79-82, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 168

[285] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In
16th International Colloquium on Automata Languages, and Programming, Vol.
372 o f L. N. in Comp. Sc., pp. 687-703, 1989. Revised version available as IBM
Research Report RC15840. IBM Watson Research Center, Yorktown Heights,
N.Y., June 1990.

[286] P. Raghavan and C.D. Thompson. Provably good routing in graphs: Regular
arrays. In °roc. of 17th ACM Symp. on Theory o f Computing, 1985.

[287] Ramalingam and T. Reps. On competitive on-line algorithms for the dynamic
priority-ordering problem. Inform. Processing Letters 51, pp. 155-161, 1994.

[288] H. Ra~esh On traversing layered graphs on-line. In Proc. 4th ACM-SIAM Symp.
on Discrete Algorithms, pp. 412-421, 1993.

[2891 M. Rauch. Fully dynamic biconnectivity in graphs. In Proc. 33rd Ann. Symp. on
Foundations of Computer Science, 1992.

[290] J.H. Reif. A topological approach to dynamic graph connectivity. In Inform.
Processing 25, pp. 65-70, 1987.

[291] E. Reingold and R. Tarjan. On a greedy heuristic for complete matching. In SIAM.
J. o f Computing 10, pp. 676-681, 1981.

[292] N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms
for the list update problem. In Algorithmica 11, pp. ' *2, 1994.

[293] T. Reiss. An approach to incremental compilation. ACM SIGPLAN Notices 19,
pp. 144-156, 1984.

[294] T. Reps Incremental evaluation for attribute crammars with unrestricted
movement between tree modifications. Acta lnformatica 25, pp. 155-178, 1988.

[2>-/] T. Reps, T. Teitelbaum. and S. Demers. Incremental context-dependent analysis
for language-bases editors. ACM Trans, on Programming Languages and Systems
5, pp. 449-477, 1983.

[296] R. Rivest. On self-organizing sequential search heuristics. Communications o f the
ACM. Vol. 19, pp. 63"-67, 1976.

[297] C.A. Rogers. Packing and Covering. Cambridge University Press. Cambridge,
1964.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 169

[298] B.G. Ryder and M.C. Pauli. Incremental data flow analysis. In ACM Trans.
Programming Languages System' 10, pp. 1-50, 1988.

[299] S. Sairam, J.S. Vitter, and R. Tamassia. A complexity-theoretic approach to
incremental computation. In L. N. in Comput. Scie, Vol. 665, STACS‘ 93, 1993.

[300] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1986.

[301] M. Shanahan. Incrementality and logic programming. In Reason maintenance
systems and their applications, ed. B. Smith et al., Halstead Press, New York, NY,
1988.

[302] C. Scheurich and M. Dubois. Dynamic page migration in multiprocessors with
distributed shared memory. IEEE Trans, on Computer, Vol. 38, pp. 1154-1163,
1989.

[303] J.T. Schwarz and M. Sharir. Algorithmic motion planning in robotics. Handbook
o f Theoretical Computer Science. MIT Press, pp. 391-430, 1991.

[304] C. Schwarz, M. Smid, and J. Snoeyink. An optimal algorithm for the on-line
closest-pair problem. Algorithmica 12, pp. 18-29, 1994.

[305] J.T. Schwartz and C.-K. Yap. Algorithms and Geometric Aspects o f Robotics.
Lawrence Erlbaum Associates, Hillsdale, 1987.

[306] F. Shahrokhi and D. Matula. The maximum concurrent flow problem. In J. Assoc.
Comput. Mach., pp. 318-334, 1990.

[307] G.S. Shedler and C. Tung. Locality in page reference strings. In SIAM J. on
Computing 1, pp. 218-241, 1972.

[308] M. Sherk. Self-adjusting k-ary search trees. In Proc. o f the Workshop on
Algorithms and Data Structure, pp. 381-392, 1989.

[309] M . Sherk. Seif-adjusting k-ary search trees and self-adjusting balanced search
trees. Technical Report 234/1990, University o f Toronto, 1990.

[310] T. Shermer. Recent results in art galleries. CMPT Tk 90-10, School o f Computing
Science, Sinion Fraser University, Oct., 1990.

[311] D.B. Shmoys, J. Wein, and D.P. Williamson. Scheduling parallel machines on-line.
In Proc. 32nd IEEE Symp. in Foundations o f Computer Science, pp. 131-140,
1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 170

[312] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications o f the ACM, Vol. 28, pp. 202-208, 1985.

[313] D.D Sleator and E.E. Tarjan. Self-adjusting binary search trees. In J. o f the ACM,
Vol. 32. pp. 652-686, 1985.

[314] M.l. Shamos. Computational Geometry. Ph. D. thesis, Department o f Computer
Science, Yale University, (USA), 1978.

[315] W.E. Smith. Various optimizes fo r single-stage production. Naval Res. Logist.
Quart., Vol. 3, pp. 59-66, 1956.

[316] M. Solomon and J. Desroiers. Time window constrained routing and scheduling
problems: a survey. Trans. Science 22, pp. 1-13, 1988.

[317] J.R. Spirn. Program Behavior: Models and Measurements. Elsevier Computer
Science Library, Elsevier, Amsterdam, 1977.

[318] J. Spencer. Ten Lectures on the Probabilistic Method. Regioinal Conference Series
in Applied Mathematics, Vc' 64. SIAM Philadelphia, PA, 1994.

[319] P.M. Spira and A. Pan. On finding and updating shortest paths and spanning trees.
In Symp. on Switching and Automata Theoiy, pp. 82-84, 1973.

[320] E. Styer and G. Peterson. Improved algorithms for distributed resource allocation.
In Proc. o f 7th ACM Svmp. on Principles o f distributed Computing, pp. 105-116,
1988.

[321] R Tamassia. A dynamic data structure for planar graph embedding. In Proc. o f the
I5th Intern. Colloquium on Automata, Languages and Programming, Vol. 317,
pp. 576-590, 1988.

[322] R. Tamassia and F.P. Preparata. Dynamic maintenance of planar digraphs. In
Algorithmica 5, pp. 509-527, 1990.

[323] A.S. Tanenbaum. Modern Operating Sxstems. Prentice-Hall, Englewood Cliffs,
1988.

[324] A.S. Tanenbaum and R. van Renesse. Distributed operating systems. In ACM
Computing Surveys, Vol. 17, pp. 419-470, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 171

[325] R.E. Tarjan. Amortized computational complexity. In SIAM J. Alg. Discrete
Methods, Vol. 6, pp. 306-3 ? 8. 1985.

[326] R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, 1983.

[327] R.E. Tarjan. Depth-first search and linear graph algorithms. In SIAM J.
Computing, 1972.

[328] R.E. Tarjan. A class of algorithms that require nonlinear time to maintaining
disjoint sets. In J. o f Computer and System Sciences, Vol. 18, pp. 110-227, 1979.

[329] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. In J. o f the
ACM, Vol. 22. pp. 215-225, f975.

[330] B.A. Teia. Lower bound for randomized list update algorithms. In Information
Processing Letters 47, pp. 5-9, 1993.

[331] M. Teillaud. Towards dynamic randomized algorithms in Computational
Geometry. Springer-Verlag, 1993.

[332] P. Tetali. Design of on-line algorithms using hitting times. In Proc. ACM-SIAM
Symp. on Discrete Algorithms, pp. 402-411, 1994.

[333] P. Tetali. Random walks and the effective resistance of networks. In J. Theoretical
Probability, pp. 101-109, 1991.

[334] Y.T. Tsai and C.Y. Tang. The competitive of randomized algorithms for on-line
steiner tree and on-line spanning tree problems. Inform. Processing Letters 48, pp.
177-182, 1993.

[335] Y.T. Tsai, C.Y. Tang, and Y.Y. Chen. Average performance of a greedy algorithm
for the on-line minimum matching problem of Euclidean space. In Inform.
Processing Letters 51, pp. 275-282, 1994.

[336] G. Turbin. Resent work on the server Problem. Master’s thesis, University o f
Toronto, 1989.

[337] S. Vishwanathan. Randomized on-line graph coloring. In Proc. o f 31st IEEE
Symp. on Foundations o f Computer Science, pp. 464-469, 1990. Also in J.
Algorithms 13, pp. 657-669. 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 172

[338] J.S. Vittcr and P. Krishmam. Optimal prefetching via data compression. In 32nd
IEEE Symp. on Foundations o f Computer Science, pp. 121-130, 1991.

[339] J. WestbrooK. Randomized algorithms for multiprocessor page migration. SIAM J.
Computing 23. pp. 951-965, 1994.

[340] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected
components on-line. Algorithmica 7, pp. 433-464, 1992.

[341] J, Westbrook and D.C.K. Yan. Greedy algorithms for on-line steiner tree and
generalized steiner problems. In 4th WADS' 93. Algorithms and Data Structure,
pp. 622-633, 1993.

[342] A. Wig ’erson. Improving the performance guarantee for approximate graph
coloring. In J. ACM 30. pp. 729-735, 1983.

[343] G.J. Woeginger. On-line scheduling of jobs with fixed start and end times. In
Theoretical Computer Science 130, pp. 5-16, 1994.

[344] A.C.-C. Yao. Probabilistic computations: Towards a unified measure of
complexity. In Proc. o f 18th IEEE Symp. on the Foundation o f Computer Science.
pp. 222-227, 1977.

[345] C.-K. Yap. Algorithmic motion planning. In : Algorithmic and Geometric Aspects
o f Robotics, Vol. 1, Hillsdale and London, pp. 95-143, 1987.

[346] D.M. Yellin. Speeding up dynamic transitive closure for bounded degree graphs.
In Acta Informatica, 1991.

[347] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica
11, pp. 525-541, 1994.

[348] N. Young. On-line caching as cache size varies. In Proc. 2nd ACM-SIAM Symp.
on Discrete Algorithms, pp. 241-250, 1991.

[349] Zhou, K. Schwan, and I.F. Akyildiz. Performance effects of information sharing in
a distributed multiprocessor real-time scheduler. In Proc. IEEE Real-Time Systems
Symp., pp. 46-55, 1992.

1350] S. Ben-David and A. Borodin. A new measure for the study of on-line Algorithms.
In Algorithmica 11, pp. 73-91, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Bibliography of On-line Algorithms 173

[351] P. Raghavan. Lectures Notes on Randomization Algorithms. Research Report RC
15340 (#68237). IBM Research Division. T.J. Watson research Centre, Yorktown
Heights, NY 10598, 1990.

[352] ErdOs. On a combinatorial problem, I and II. In J. Spencer, ed., Paul Erdfls: The
Art o f Computing. MIT Press, Cambridge, MA, 1973.

[353] A. Apostolico, M. Farah, and C.S. Iliopoulos. Optimal superprimitivity testing
forstrings.In Information Processing Letters 39, pp. 17-20, 1991.

[354] D. Dowdy and Foster. Competitive models of the file assignment problem. In
Computing Surveys, 14, pp. 287-313, 1982.

[355] M. Imase and B. M. Waxman. Dynamic steiner tree problem. In SIAM J. on
Discrete Mathematics, 4(3), pp. 369-384, 1991.

[356] C. Lund and N. Reingold, J. Westbrook and D. Yan. On-line distributed data
management. Manuscript submitted. 1994.

[357] R. El-Yaniv. On-line algorithms and financial decision making. Ph. D. Thesis,
University o f Toronto, 1994.

[358] A.. Marchetti - Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.
In Math. Programming 68, pp. 73-104, 1995.

[359] F. Luccio and A. Pedrotti. A parallel list update problem. Information Processing
U tters 52, pp. 277-284, 1994.

[360] a . Blum and P. Chalasani. An on-line algorithm for improving performance in
navigation. In Proc. o f 34th Symp. on Computer Science, pp. 2-19, 1993.

Give them according to the deeds

Psalm*1 28: 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

